

2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution

Kai Liu¹, Haotong Qin², Yong Guo³, Xin Yuan⁴, Linghe Kong¹, Guihai Chen^{1*}, Yulun Zhang^{1*} ¹Shanghai Jiao Tong University, ²ETH Zürich, ³Max Planck Institute for Informatics, ⁴Westlake University

Introduction

Motivation

- Vision Transformers (ViTs) excel in SR tasks but face high costs.
- Low bit post-training quantization (**PTQ**) reduces memory and computation.
- The deterioration of self-attention in quantized transformers limit its application.
- We propose **2DQuant**, a novel PTQ for ViT in SR.

Method-Overview

Overall

- The overall pipeline of our proposed 2DQuant.
- The whole pipeline can be divided into two parts: DOBI (left) and DQC (right).

Method-Observation

Observation

- The distribution of the activation and weights of ViT present two kind of distribution
- Weight and most of the activation presents normal distribution.
- The attention part presents exponential distribution.
- So asymmetric quantization is necessary for low bit quantization in ViT.

Method-DOBI

• MSE serve as a strong method to obtain the quantization bound.

$$\{(l_i, u_i)\}_{i=1}^N = \arg\min_{l_i, u_i} \sum_{i=1}^N \|v_i - v_{qi}\|_2$$

- The different distribution of weight and activation guide us to search the best bound with different strategy.
- For normal distribution, two direction search is easy to find the best bound.
- For exponential distribution, the lower bound is fixed as the min value and only the upper bound needs searching.

```
Algorithm 1: DOBI pipeline
Data: Data to be quantized v, the
        number of search point K, bit b
Result: Clip bound l, u
l \leftarrow \min(v), u \leftarrow \max(v);
min\_mse \leftarrow +\infty;
if v is symmetrical then
    \Delta l \leftarrow (\max(v) - \min(v))/2K;
else
    \Delta l \leftarrow 0;
end
\Delta u \leftarrow (\max(v) - \min(v))/2K;
while i < K do
     l_i \leftarrow l + i \times \Delta l, u_i \leftarrow u + i \times \Delta u;
     get v_q based on Eq. (1);
     mse \leftarrow \|v - v_q\|_2;
     if mse \leq min\_mse then
          min\_mse \leftarrow mse;
         l\_best \leftarrow l_i, u\_best \leftarrow u_i;
     end
end
```

Method-DQC

DQC

- DOBI targets at local quantization error loss, which is not necessarily consistent with task loss.
- Distillation between the FP model and the quantized model could provide accurate update direction for quantizers' bound.
- Features and final output consititutes the optimization loss.

Experiments

Method	Bit	Set5 PSNR↑	$\stackrel{(\times 4)}{\text{SSIM}}\uparrow$	Set14 PSNR↑	· (×4) SSIM↑	B100 PSNR↑) (×4) SSIM↑	Urban1 PSNR↑	00 (×4) SSIM↑	Manga1 PSNR↑	09 (×4) SSIM↑
SwinIR-light [29]	32	32.45	0.8976	28.77	$0.7858 \\ 0.6820$	27.69	0.7406	26.48	0.7980	30.92	0.9150
Bicubic	32	27.56	0.7896	25.51		25.54	0.6466	22.68	0.6352	24.19	0.7670
MinMax [22]	$ \begin{array}{ } 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	28.63	0.7891	25.73	0.6657	25.10	0.6061	23.07	0.6216	26.97	0.8104
Percentile [27]		30.64	0.8679	27.61	0.7563	26.96	0.7151	24.96	0.7479	28.78	0.8803
EDSR [†] [30, 39]		31.20	0.8670	27.98	0.7600	27.09	0.7140	25.56	0.7640	N/A	N/A
DBDC+Pac [39]		30.74	0.8609	27.66	0.7526	26.97	0.7104	24.94	0.7369	28.52	0.8697
DOBI (Ours)		31.10	0.8770	28.03	0.7672	27.18	0.7237	25.43	0.7631	29.31	0.8916
2DQuant (Ours)		31.77	0.8867	28.30	0.7733	27.37	0.7278	25.71	0.7712	29.71	0.8972
MinMax [22]	3	19.41	0.3385	18.35	0.2549	18.79	0.2434	17.88	0.2825	19.13	0.3097
Percentile [27]	3	27.55	0.7270	25.15	0.6043	24.45	0.5333	22.80	0.5833	26.15	0.7569
DBDC+Pac [39]	3	27.91	0.7250	25.86	0.6451	25.65	0.6239	23.45	0.6249	26.03	0.7321
DOBI (Ours)	3	29.59	0.8237	26.87	0.7156	26.24	0.6735	24.17	0.6880	27.62	0.8349
2DQuant (Ours)	3	30.90	0.8704	27.75	0.7571	26.99	0.7126	24.85	0.7355	28.21	0.8683
MinMax [22]	$\begin{vmatrix} 2\\2\\2\\2\\2\\2 \end{vmatrix}$	23.96	0.4950	22.92	0.4407	22.70	0.3943	21.16	0.4053	22.94	0.5178
Percentile [27]		23.03	0.4772	22.12	0.4059	21.83	0.3816	20.45	0.3951	20.88	0.3948
DBDC+Pac [39]		25.01	0.5554	23.82	0.4995	23.64	0.4544	21.84	0.4631	23.63	0.5854
DOBI (Ours)		28.82	0.7699	26.46	0.6804	25.97	0.6319	23.67	0.6407	26.32	0.7718
2DQuant (Ours)		29.53	0.8372	26.86	0.7322	26.46	0.6927	23.84	0.6912	26.07	0.8163

Quantitative

- Best performance: Achieves the best results among quantization methods for SR.
- More results can be found in the main paper.

Experiments

Visual

- Our method restores clearer images with more texture details.
- The gap between the quant model and the FP model is small.
- Quantization alleviates overfitting and in some condition, quantized model has better performance compared with FP model.

Model	EDSR [30]	EDSR (4bit) [39]	SwinIR-light [29]	DBDC+Pac (4bit) [39]	Ours (4bit)
Params (MB)	172.36	21.55	3.42	1.17	1.17
Ops (G)	823.34	103.05	16.74	4.19	4.19
PNSR on Urban100	26.64	25.56	26.47	24.94	25.71

Compression

 No additional module brings Theoretical minimum computation complexity

۲ Quantizer lower bound percentile. Quantizer upper bound percentile. 0.30 -1.00 -DOBI DOBI+DQC • 0.25 0.95 0.20 0.90 0.15 0.85 -0.10 0.80 -• 0.05 0.75 -DOB DOBI+DQC 0.00 0.70 80 120 0 20 40 60 80 100 120 140 0 20 40 60 100 140

arning rate	PSNR ↑	SSIM ↑	Batch size	PSNR ↑	SSIM↑
10^{-1}	37.82	0.9594	4	37.82	0.9594
10^{-2}	37.87	0.9594	8	37.83	0.9594
10^{-3}	37.78	0.9592	16	37.84	0.9593
10^{-4}	37.74	0.9587	32	37.87	0.9594
(a) Lear	rning rate		(b) B	atch size	

Bound

- Different objectives lead to different bounds.
- DQC could bring more extreme clipping bounds compared with DOBI
- The most extreme one leaves only 46% data in clipping bounds.

Ablation

• Both DOBI and DQC improves the models' performance.

Conclusion

Contribution

We propose **2DQuant**, a dual-stage low bit post-training quantization method for image SR.

- **DOBI:** a fast MSE-based searching method to minimize the value heterogenization
- **DQC:** distillation beteen the FP model and the quantized model bring accurate quantizer parameters.
- **Performance:** Outperforms SOTA PTQ methods for SR.

