Credal Learning Theory

Michele Caprio Joint work with Maryam Sultana, Eleni G. Elia, and Fabio Cuzzolin

Department of Computer Science, University of Manchester Manchester Centre for AI Fundamentals

Michele Caprio (U of Manchester) [Credal Learning Theory](#page-44-0) December 10-15, 2024 1/9

 Ω

Statistical Learning Theory (SLT) is the foundation of Machine Learning

4 D F

- Statistical Learning Theory (SLT) is the foundation of Machine Learning
- Provides theoretical bounds for the risk of models learnt from a (single) training set

- Statistical Learning Theory (SLT) is the foundation of Machine Learning
- Provides theoretical bounds for the risk of models learnt from a (single) training set
	- Assumed to issue from a single unknown probability distribution

• Problem: predicting an output $y \in \mathcal{Y}$ given an input $x \in \mathcal{X}$, using mapping $h : \mathcal{X} \to \mathcal{Y}$, $h \in \mathcal{H}$

∢ □ ▶ ⊣ *←* □

 $A \equiv A \equiv 1 \equiv 0.00$

- Problem: predicting an output $y \in \mathcal{Y}$ given an input $x \in \mathcal{X}$, using mapping $h : \mathcal{X} \to \mathcal{Y}$, $h \in \mathcal{H}$
- Loss Function: $l : (\mathcal{X} \times \mathcal{Y}) \times \mathcal{H} \rightarrow \mathbb{R}$

4 0 F

 $A \equiv A \equiv 1 \equiv 0.00$

- Problem: predicting an output $y \in \mathcal{Y}$ given an input $x \in \mathcal{X}$, using mapping $h : \mathcal{X} \to \mathcal{Y}$, $h \in \mathcal{H}$
- Loss Function: $l : (\mathcal{X} \times \mathcal{Y}) \times \mathcal{H} \rightarrow \mathbb{R}$
	- It measures the error committed by a model $h \in \mathcal{H}$

- Problem: predicting an output $y \in \mathcal{Y}$ given an input $x \in \mathcal{X}$, using mapping $h : \mathcal{X} \to \mathcal{Y}$, $h \in \mathcal{H}$
- Loss Function: $l : (\mathcal{X} \times \mathcal{Y}) \times \mathcal{H} \rightarrow \mathbb{R}$
	- It measures the error committed by a model $h \in \mathcal{H}$
	- Zero-one loss is defined as $I((x, y), h) \doteq \mathbb{I}[y \neq h(x)]$

 \triangleright \exists \exists \land \land \land

- Problem: predicting an output $y \in \mathcal{Y}$ given an input $x \in \mathcal{X}$, using mapping $h : \mathcal{X} \to \mathcal{Y}$, $h \in \mathcal{H}$
- Loss Function: $l : (\mathcal{X} \times \mathcal{Y}) \times \mathcal{H} \rightarrow \mathbb{R}$
	- It measures the error committed by a model $h \in \mathcal{H}$
	- Zero-one loss is defined as $I((x, y), h) \doteq \mathbb{I}[y \neq h(x)]$
- **Input-output pairs are usually assumed to be generated i.i.d. by a** probability distribution P^* , which is unknown

 $A \equiv A$ \equiv $B \equiv$ \bigcirc $Q \cap$

• Expected risk – or expected loss – of the model h ,

$$
L(h) \equiv L_{P^*}(h) \doteq \mathbb{E}_{P^*}[l((x,y),h)]
$$

=
$$
\int_{\mathcal{X}\times\mathcal{Y}} l((x,y),h)P^*(d(x,y)),
$$

measures the expected value w.r.t. P^* of loss P

4 D F

• Expected risk – or expected loss – of the model h ,

$$
L(h) \equiv L_{P^*}(h) \doteq \mathbb{E}_{P^*}[l((x,y),h)]
$$

=
$$
\int_{\mathcal{X}\times\mathcal{Y}} l((x,y),h)P^*(d(x,y)),
$$

measures the expected value w.r.t. P^* of loss P

Expected risk minimizer

$$
h^{\star} \in \argmin_{h \in \mathcal{H}} L(h),
$$

is any hypothesis in H that minimizes the expected risk

Statistical Learning Theory Overview and Notation

• Consider a training dataset $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}\$

 $(x_1, y_1), \ldots, (x_n, y_n) \sim P^*$ i.i.d.

4 ロ ▶ 4 冊

H 로 H 토 = 990

Overview and Notation

- Consider a training dataset $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}\$
	- $(x_1, y_1), \ldots, (x_n, y_n) \sim P^*$ i.i.d.
- **Empirical risk of hypothesis h**

$$
\hat{L}(h)=\frac{1}{n}\sum_{i=1}^n I((x_i,y_i),h)
$$

4 0 F

• Consider a training dataset $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}\$

 $(x_1, y_1), \ldots, (x_n, y_n) \sim P^*$ i.i.d.

Empirical risk of hypothesis h

$$
\hat{L}(h)=\frac{1}{n}\sum_{i=1}^n I((x_i,y_i),h)
$$

Empirical risk minimizer (ERM)

$$
\hat{h} \in \argmin_{h \in \mathcal{H}} \hat{L}(h)
$$

4 D F

 \triangleright \exists \exists \land \land \land

- SLT seeks upper bounds on the excess risk
	- Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$

Overview and Notation

- SLT seeks upper bounds on the excess risk
	- Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
	- Under increasingly more relaxed assumptions about the nature of the hypotheses space $\mathcal H$

Overview and Notation

- SLT seeks upper bounds on the excess risk
	- Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
	- Under increasingly more relaxed assumptions about the nature of the hypotheses space $\mathcal H$
		- \bullet H is finite

Overview and Notation

- SLT seeks upper bounds on the excess risk
	- Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
	- Under increasingly more relaxed assumptions about the nature of the hypotheses space $\mathcal H$
		- \bullet H is finite
		- There exists a model h^* with zero expected risk (realizability)

- SLT seeks upper bounds on the excess risk
	- \bullet Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
	- Under increasingly more relaxed assumptions about the nature of the hypotheses space $\mathcal H$
		- \bullet H is finite
		- There exists a model h^* with zero expected risk (realizability)
- But what should we do when distribution shifts are allowed?

 $E \cap Q$

- SLT seeks upper bounds on the excess risk
	- \bullet Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
	- Under increasingly more relaxed assumptions about the nature of the hypotheses space $\mathcal H$
		- \bullet H is finite
		- There exists a model h^* with zero expected risk (realizability)
- But what should we do when distribution shifts are allowed?
	- May cause issues of domain adaptation or domain generalization

- SLT seeks upper bounds on the excess risk
	- \bullet Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
	- Under increasingly more relaxed assumptions about the nature of the hypotheses space $\mathcal H$
		- \bullet H is finite
		- There exists a model h^* with zero expected risk (realizability)
- But what should we do when distribution shifts are allowed?
	- May cause issues of domain adaptation or domain generalization
	- Existing attempts: lack of generalizability, use of strong assumptions [\(Caprio et al., 2024,](#page-45-0) Section 2)

B K E B E E MA G

- SLT seeks upper bounds on the excess risk
	- \bullet Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
	- Under increasingly more relaxed assumptions about the nature of the hypotheses space $\mathcal H$
		- \bullet H is finite
		- There exists a model h^* with zero expected risk (realizability)
- But what should we do when distribution shifts are allowed?
	- May cause issues of domain adaptation or domain generalization
	- Existing attempts: lack of generalizability, use of strong assumptions [\(Caprio et al., 2024,](#page-45-0) Section 2)
	- We use Credal Sets to address this issue

- Credal Set [Levi \(1980\)](#page-45-1): A set of probabilities P that is closed and convex
- Finitely Generated Credal Set: A credal set P with finitely many extreme elements $ex\mathcal{P}$

つへへ

A Summary of our Learning Framework

メーキ 語

٠

4 ロ ▶ 4 冊

重目 のへぐ

• Suppose that our evidence is a finite sample of training sets, D_1, \ldots, D_N

 \leftarrow \equiv

∢ 口 ≯ ∢ 何

- Suppose that our evidence is a finite sample of training sets, D_1, \ldots, D_N
- $D_i = \{ (x_{i,1}, y_{i,1}), \ldots, (x_{i,n_i}, y_{i,n_i}) \}$, for all $i \in \{1, \ldots, N\}$

4 D F

- Suppose that our evidence is a finite sample of training sets, D_1, \ldots, D_N
- $D_i = \{ (x_{i,1}, y_{i,1}), \ldots, (x_{i,n_i}, y_{i,n_i}) \}$, for all $i \in \{1, \ldots, N\}$
- $(x_{i,1}, y_{i,1}), \ldots, (x_{i,n_i}, y_{i,n_i}) \sim P_i^{\star}$ i.i.d., for all $i \in \{1, \ldots, N\}$

4 **D F**

 \triangleright \exists \exists \land \land \land

- Suppose that our evidence is a finite sample of training sets, D_1, \ldots, D_N
- $D_i = \{ (x_{i,1}, y_{i,1}), \ldots, (x_{i,n_i}, y_{i,n_i}) \}$, for all $i \in \{1, \ldots, N\}$
- $(x_{i,1}, y_{i,1}), \ldots, (x_{i,n_i}, y_{i,n_i}) \sim P_i^{\star}$ i.i.d., for all $i \in \{1, \ldots, N\}$
- P_i^{\star} need not be equal to P_j^{\star} , for all $i, j \in \{1, ..., N\}$, $i \neq j$

4 **D F**

B K E B E E MA G

Obtaining the Generalization Bounds Realizability + Finite \mathcal{H}'

(C. et al, 2024, Theorem 4.1)

Let $(x_{N+1,1}, y_{N+1,1}), \ldots, (x_{N+1,n_{N+1}}, y_{N+1,n_{N+1}}) \equiv (x_1, y_1), \ldots, (x_n, y_n)$ be sampled i.i.d. from $P_{N+1}^{\star} \equiv P \in \mathcal{P}$. Recall that the empirical risk minimizer is $\hat{h} \in \argmin_{h \in \mathcal{H}} \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n$ /((x_i, y_i), h). Assume

- there exists a realizable hypothesis, i.e. $\,h^\star \in \mathcal{H}$ such that $L_P(h^\star) = 0$
- \bullet H is finite
- zero-one loss $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

격대

 290

Obtaining the Generalization Bounds Realizability + Finite \mathcal{H}'

(C. et al, 2024, Theorem 4.1)

Let $(x_{N+1,1}, y_{N+1,1}), \ldots, (x_{N+1,n_{N+1}}, y_{N+1,n_{N+1}}) \equiv (x_1, y_1), \ldots, (x_n, y_n)$ be sampled i.i.d. from $P_{N+1}^{\star} \equiv P \in \mathcal{P}$. Recall that the empirical risk minimizer is $\hat{h} \in \argmin_{h \in \mathcal{H}} \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n$ /((x_i, y_i), h). Assume

- there exists a realizable hypothesis, i.e. $\,h^\star \in \mathcal{H}$ such that $L_P(h^\star) = 0$
- \bullet H is finite
- zero-one loss $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

Fix any $\delta \in (0,1)$. Then,

$$
\mathbb{P}\left[L_P(\hat{h}) \leq \epsilon^{\star}(\delta) \right] \geq 1 - \delta,
$$

where $\epsilon^\star(\delta)$ is a well-defined quantity that depends only on δ and on the elements of exP.

-4 ⊞ »

 290

- 그리 정

Obtaining the Generalization Bounds Realizability + Finite H

(C. et al, 2024, Corollary 4.3)

Retain the assumptions of Theorem 4.1. We have that

$$
\epsilon^{\star}(\delta) \leq \epsilon_{\mathsf{UB}}(\delta) \doteq \frac{\log |\mathcal{H}| + \log \left(\frac{1}{\delta} \right)}{n}.
$$

In turn, the following holds for all $P \in \Delta_{\mathcal{X} \times \mathcal{V}}$,

$$
\mathbb{P}\left[L_P(\hat{h}) \leq \epsilon_{\mathsf{UB}}(\delta)\right] \geq 1 - \delta. \tag{1}
$$

 \bullet $\epsilon_{\text{UB}}(\delta)$ is a uniform bound

通信 めなめ

Obtaining the Generalization Bounds Realizability + Finite H

(C. et al, 2024, Corollary 4.3)

Retain the assumptions of Theorem 4.1. We have that

$$
\epsilon^{\star}(\delta) \leq \epsilon_{\mathsf{UB}}(\delta) \doteq \frac{\log|\mathcal{H}| + \log\left(\frac{1}{\delta}\right)}{n}.
$$

In turn, the following holds for all $P \in \Delta_{\mathcal{X}\times\mathcal{V}}$,

$$
\mathbb{P}\left[L_P(\hat{h}) \leq \epsilon_{\mathsf{UB}}(\delta)\right] \geq 1 - \delta. \tag{1}
$$

- \bullet $\epsilon_{\text{UB}}(\delta)$ is a uniform bound
- When only few samples are available, $\epsilon^\star(\delta)$ much smaller than $\epsilon_{\textsf{UB}}(\delta)$

通信 めなめ

Obtaining the Generalization Bounds Realizability + Finite H

(C. et al, 2024, Corollary 4.3)

Retain the assumptions of Theorem 4.1. We have that

$$
\epsilon^{\star}(\delta) \leq \epsilon_{\mathsf{UB}}(\delta) \doteq \frac{\log |\mathcal{H}| + \log \left(\frac{1}{\delta} \right)}{n}.
$$

In turn, the following holds for all $P \in \Delta_{\mathcal{X}\times\mathcal{V}}$,

$$
\mathbb{P}\left[L_P(\hat{h}) \leq \epsilon_{\mathsf{UB}}(\delta)\right] \geq 1 - \delta. \tag{1}
$$

- \bullet $\epsilon_{\text{UB}}(\delta)$ is a uniform bound
- When only few samples are available, $\epsilon^\star(\delta)$ much smaller than $\epsilon_{\textsf{UB}}(\delta)$

$$
\bullet\ \mathcal{O}\left(\tfrac{\log |\cup_{P^{\mathrm{ex}} \in \mathrm{exp}} B_{P^{\mathrm{ex}}}|}{n}\right) \leq \mathcal{O}\left(\tfrac{\log |\mathcal{H}|}{n}\right)
$$

通信 めなめ

Obtaining the Generalization Bounds Realizability + Finite \mathcal{H}'

(C. et al, 2024, Corollary 4.3)

Retain the assumptions of Theorem 4.1. We have that

$$
\epsilon^{\star}(\delta) \leq \epsilon_{\mathsf{UB}}(\delta) \doteq \frac{\log |\mathcal{H}| + \log \left(\frac{1}{\delta} \right)}{n}.
$$

In turn, the following holds for all $P \in \Delta_{\mathcal{X}\times\mathcal{V}}$,

$$
\mathbb{P}\left[L_P(\hat{h}) \leq \epsilon_{\mathsf{UB}}(\delta)\right] \geq 1 - \delta. \tag{1}
$$

- \bullet $\epsilon_{\text{UB}}(\delta)$ is a uniform bound
- When only few samples are available, $\epsilon^\star(\delta)$ much smaller than $\epsilon_{\textsf{UB}}(\delta)$

$$
\bullet\ \mathcal{O}\left(\tfrac{\log |\cup_{P^{\mathrm{ex}} \in \mathrm{exp}} B_{P^{\mathrm{ex}}}|}{n}\right) \leq \mathcal{O}\left(\tfrac{\log |\mathcal{H}|}{n}\right)
$$

• Equation [\(1\)](#page-30-1) corresponds to [\(Liang, 2016,](#page-45-2) [Th](#page-32-0)[eor](#page-34-0)[e](#page-29-0)[m](#page-30-0) [4](#page-34-0)[\)](#page-0-0)

 $E|E$ Ω

Obtaining the Generalization Bounds Realizability + Finite $\mathcal H$

• Allowing for distribution drift

4 0 F

Obtaining the Generalization Bounds Realizability + Finite \mathcal{H}'

• Allowing for distribution drift

(C. et al, 2024, Corollary 4.4)

Consider a natural number $k < n$. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set P . Retain the other assumptions of Theorem 4.1.

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q
• Allowing for distribution drift

(C. et al, 2024, Corollary 4.4)

Consider a natural number $k < n$. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set \mathcal{P} . Retain the other assumptions of Theorem 4.1. Then,

$$
\mathbb{P}\left[L_{P_1}(\hat{h}_1)+L_{P_2}(\hat{h}_2)\leq \epsilon^{\star}(\delta)\frac{n^2}{k(n-k)}\right]\geq 1-\delta,
$$

where $\epsilon^\star(\delta)$ is the same quantity as in Theorem 4.1, and

K □ ▶ K ① ▶ K 로 ▶ K 로 ▶ 그리는 K) Q (^

• Allowing for distribution drift

(C. et al, 2024, Corollary 4.4)

Consider a natural number $k < n$. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set \mathcal{P} . Retain the other assumptions of Theorem 4.1. Then,

$$
\mathbb{P}\left[L_{P_1}(\hat{h}_1)+L_{P_2}(\hat{h}_2)\leq \epsilon^{\star}(\delta)\frac{n^2}{k(n-k)}\right]\geq 1-\delta,
$$

where $\epsilon^\star(\delta)$ is the same quantity as in Theorem 4.1, and

$$
\hat{h}_1 \in \argmin_{h \in \mathcal{H}} \frac{1}{k} \sum_{i=1}^k I((x_i, y_i), h), \quad \hat{h}_2 \in \argmin_{h \in \mathcal{H}} \frac{1}{n-k} \sum_{i=k+1}^n I((x_i, y_i), h).
$$

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ)도 19 Q @

In [\(Caprio et al., 2024,](#page-45-0) Section 4.2): similar results when the realizability assumption is relaxed, but H is kept finite

- \bullet In [\(Caprio et al., 2024,](#page-45-0) Section 4.2): similar results when the realizability assumption is relaxed, but $\mathcal H$ is kept finite
- In [\(Caprio et al., 2024,](#page-45-0) Section 4.3): similar results when the realizability assumption is relaxed, and $\mathcal H$ is (potentially uncountably) infinite

• In the future, we plan to

∢ 口 ≯ ∢ 何

重目 のへぐ

- In the future, we plan to
	- Extend our results to different losses

4 0 F

重性 つべい

- In the future, we plan to
	- Extend our results to different losses
	- \bullet Derive PAC-like guarantees on the correct distribution P being an element of the credal set P

4 **D F**

 $E \cap Q$

- In the future, we plan to
	- Extend our results to different losses
	- Derive PAC-like guarantees on the correct distribution P being an element of the credal set \mathcal{P}
	- Validate our findings on real datasets

 $= \Omega Q$

THANK YOU FOR YOUR ATTENTION!

重目 のへぐ

 \triangleright \rightarrow \exists \rightarrow

∢ □ ▶ ⊣ *←* □

- Michele Caprio, Maryam Sultana, Eleni Elia, and Fabio Cuzzolin. Credal learning theory. To be submitted to NeurIPS 2024, 2024.
- Isaac Levi. The Enterprise of Knowledge. London, UK : MIT Press, 1980.
- Percy Liang. Statistical learning theory. [Lecture notes](https://web.stanford.edu/class/cs229t/notes.pdf) for the course CS229T/STAT231 of Stanford University, 2016.

 $F = \Omega Q$

Obtaining the Generalization Bounds No Realizability + Finite H

• Foregoing the Realizability assumption

4 **D F**

No Realizability + Finite $\mathcal H$

(C. et al, 2024, Theorem 4.5)

Let $(x_1, y_1), \ldots, (x_n, y_n) \sim P$ i.i.d., where P is any element of credal set P. Assume

- \bullet H is finite
- zero-one loss $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

No Realizability + Finite $\mathcal H$

(C. et al, 2024, Theorem 4.5)

Let $(x_1, y_1), \ldots, (x_n, y_n) \sim P$ i.i.d., where P is any element of credal set P. Assume

- \bullet H is finite
- zero-one loss $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

Let \hat{h} be the empirical risk minimizer, and h^\star be the best theoretical model. Fix any $\delta \in (0,1)$. Then,

$$
\mathbb{P}\left[L_P(\hat{h}) - L_P(h^\star) \leq \epsilon^{\star\star}(\delta)\right] \geq 1 - \delta,
$$

where $\epsilon^{\star\star}(\delta)$ is a well-defined quantity that depends only on δ and on the elements of exP.

▶ [Go to Corollary 4.7](#page-53-0)

K □ ▶ K ① ▶ K 로 ▶ K 로 ▶ 그리는 K) Q (^

Obtaining the Generalization Bounds No Realizability + Finite $\mathcal H$

Proof. The proof builds on that of Liang (2016, Theorem 7). Fix any $\epsilon > 0$, and any $P \in \mathcal{P}$. Assume that the training dataset is given by n i.i.d. draws from P . By Liang (2016, Equations (158) and (186)), we have that

 $\mathbb{P}[L_P(\hat{h}) - L_P(h^{\star}) > \epsilon]$ $\leq \mathbb{P}\left[\sup_{h\geq 0} \left|\hat{L}_P(h) - L_P(h)\right| > \frac{\epsilon}{2}\right]$ (9) $<|\mathcal{H}|\cdot 2\exp\left(-2n\left(\frac{\epsilon}{2}\right)^2\right)\doteq \delta(\epsilon).$

Notice though, that we can improve on this bound, since we know that $P \in \mathcal{P}$, a finitely generated credal set. Let $B'_P = \{h \in \mathcal{H} : |\hat{L}_P(h) - L_P(h)| > \epsilon/2\}$ be the set of "bad hypotheses" according to P . Then, it is immediate to see that

$$
\sup_{h\in\mathcal{H}}\left|\hat{L}_P(h)-L_P(h)\right|=\sup_{h\in B'_P}\left|\hat{L}_P(h)-L_P(h)\right|.
$$

Notice though that we do not know P ; we only know it belongs to $\mathcal P$. Hence, we need to consider the set B'_p of bad hypotheses according to all the elements of P , that is, $B'_{\mathcal{D}} =$ $\{h \in \mathcal{H} : \exists P \in \mathcal{P}, |\hat{L}_P(h) - L_P(h)| > \epsilon/2\} = \cup_{P \in \mathcal{P}} B'_P.$ Since P is a finitely generated credal set, by the Bauer Maximum Principle and the linearity of the expectation operator we have that $B'_{\mathcal{P}} = B'_{\alpha\gamma\mathcal{P}} \doteq \{h \in \mathcal{H} : \exists P^{\text{ex}} \in$ $\exp_{\alpha} |\hat{L}_P(h) - L_P(h)| > \epsilon/2$ = $\cup_{P \propto \epsilon_{\text{ext}} \mathcal{D}} B'_{P \propto \epsilon}$. Hence, we obtain

$$
\sup_{h\in\mathcal{H}}\left|\hat{L}_P(h)-L_P(h)\right|=\sup_{h\in B'_{\text{exp}}}\left|\hat{L}_P(h)-L_P(h)\right|.
$$

In turn, (9) implies that

$$
\mathbb{P}[L_P(\hat{h}) - L_P(h^*) > \epsilon] \leq \mathbb{P}\left[\sup_{h \in B_{\text{at}}^*} \left|\hat{L}_P(h) - L_P(h)\right| > \frac{\epsilon}{2}\right] < |B'_{\text{ext}}| \cdot 2 \exp\left(-2n\left(\frac{\epsilon}{2}\right)^2\right) \doteq \delta_{\text{ext}}.
$$

Rearranging, we obtain

$$
\epsilon = \sqrt{\frac{2\left(\log|B'_{\exp}| + \log\left(\frac{2}{\delta_{\exp}}\right)\right)}{n}},\tag{10}
$$

so if δ is fixed, we can write $\epsilon \equiv \epsilon^{**}(\delta)$. In turn, this implies that $\mathbb{P}[L_P(\hat{h}) - L_P(h^*) > \epsilon^{**}(\delta)] < \delta$, or equivalently, $\mathbb{P}[L_P(\hat{h}) - L_P(h^{\star}) \leq \epsilon^{\star \star}(\delta)] \geq 1 - \delta.$ □

 $F(E \neq 0)$ Q α

(C. et al, 2024, Corollary 4.6)

Retain the assumptions of Theorem 4.5. Denote by $Q \in \mathcal{P}$, $Q \neq P$, a generic distribution in P different from P. Pick any $\eta \in \mathbb{R}_{>0}$; if the TV-diameter diam $TV(\mathcal{P}) = \eta$, we have that

$$
\mathbb{P}\left[L_Q(\hat{h}) - L_P(h^\star) \leq \epsilon^{\star\star}(\delta) + \eta\right] \geq 1 - \delta,
$$

where $\epsilon^{\star\star}(\delta)$ is the same quantity as in Theorem 4.5.

(C. et al, 2024, Corollary 4.6)

Retain the assumptions of Theorem 4.5. Denote by $Q \in \mathcal{P}$, $Q \neq P$, a generic distribution in P different from P. Pick any $\eta \in \mathbb{R}_{>0}$; if the TV-diameter diam $TV(\mathcal{P}) = \eta$, we have that

$$
\mathbb{P}\left[L_{Q}(\hat{h})-L_{P}(h^{\star})\leq \epsilon^{\star\star}(\delta)+\eta\right]\geq 1-\delta,
$$

where $\epsilon^{\star\star}(\delta)$ is the same quantity as in Theorem 4.5.

• Probabilistic bound for the expected risk $L_{\mathcal{Q}}(\hat{h})$ of the ERM \hat{h} , calculated w.r.t. the wrong distribution Q

▶ ४ 트 ▶ - 트 트 - 이의०

(C. et al, 2024, Corollary 4.6)

Retain the assumptions of Theorem 4.5. Denote by $Q \in \mathcal{P}$, $Q \neq P$, a generic distribution in P different from P. Pick any $\eta \in \mathbb{R}_{>0}$; if the TV-diameter diam $TV(\mathcal{P}) = \eta$, we have that

$$
\mathbb{P}\left[L_{Q}(\hat{h})-L_{P}(h^{\star})\leq \epsilon^{\star\star}(\delta)+\eta\right]\geq 1-\delta,
$$

where $\epsilon^{\star\star}(\delta)$ is the same quantity as in Theorem 4.5.

- Probabilistic bound for the expected risk $L_{\mathcal{Q}}(\hat{h})$ of the ERM \hat{h} , calculated w.r.t. the wrong distribution Q
	- Any distribution in P different from the one generating the training set

K □ ▶ K ① ▶ K 로 ▶ K 로 ▶ 그리는 K) Q (^

No Realizability + Finite $\mathcal H$

(C. et al, 2024, Corollary 4.7)

Retain the assumptions of Theorem 4.5. Then,

$$
\epsilon^{\star\star}(\delta) \leq \epsilon'_{\mathsf{UB}}(\delta) \doteq \sqrt{\frac{2\left(\log|\mathcal{H}| + \log\left(\frac{2}{\delta}\right)\right)}{n}}.
$$

In turn, for all $P \in \Delta_{\mathcal{X} \times \mathcal{V}}$,

$$
\mathbb{P}\left[L_P(\hat{h}) - L_P(h^*) \le \epsilon'_{\mathsf{UB}}(\delta)\right] \ge 1 - \delta,\tag{2}
$$

Main difference with Theorem 4.1: in Theorem 4.5, $L_P(\hat{h}) - L_P(h^\star)$ behaves as $\mathcal{O}\left(\sqrt{\frac{\log | \cup_{P^{\mathrm{ex}} \in \mathrm{ex}} B'_{P^{\mathrm{ex}}}|}{n}}\right)$).

No Realizability + Finite $\mathcal H$

(C. et al, 2024, Corollary 4.7)

Retain the assumptions of Theorem 4.5. Then,

$$
\epsilon^{\star\star}(\delta) \leq \epsilon'_{\mathsf{UB}}(\delta) \doteq \sqrt{\frac{2\left(\log|\mathcal{H}| + \log\left(\frac{2}{\delta}\right)\right)}{n}}.
$$

In turn, for all $P \in \Delta_{\mathcal{X} \times \mathcal{V}}$,

$$
\mathbb{P}\left[L_P(\hat{h}) - L_P(h^*) \le \epsilon'_{\mathsf{UB}}(\delta)\right] \ge 1 - \delta,\tag{2}
$$

Main difference with Theorem 4.1: in Theorem 4.5, $L_P(\hat{h}) - L_P(h^\star)$ behaves as $\mathcal{O}\left(\sqrt{\frac{\log | \cup_{P^{\mathrm{ex}} \in \mathrm{ex}} B'_{P^{\mathrm{ex}}}|}{n}}\right)$). • Slower than what we had in Theorem 4.1: relaxation of the realizability

K □ ▶ K ① ▶ K 로 ▶ K 로 ▶ 그리는 K) Q (^

No Realizability + Finite $\mathcal H$

(C. et al, 2024, Corollary 4.7)

Retain the assumptions of Theorem 4.5. Then,

$$
\epsilon^{\star\star}(\delta) \leq \epsilon'_{\mathsf{UB}}(\delta) \doteq \sqrt{\frac{2\left(\log|\mathcal{H}| + \log\left(\frac{2}{\delta}\right)\right)}{n}}.
$$

In turn, for all $P \in \Delta_{\mathcal{X} \times \mathcal{V}}$,

$$
\mathbb{P}\left[L_P(\hat{h}) - L_P(h^*) \le \epsilon'_{\mathsf{UB}}(\delta)\right] \ge 1 - \delta,\tag{2}
$$

Main difference with Theorem 4.1: in Theorem 4.5, $L_P(\hat{h}) - L_P(h^\star)$ behaves as $\mathcal{O}\left(\sqrt{\frac{\log | \cup_{P^{\mathrm{ex}} \in \mathrm{ex}} B'_{P^{\mathrm{ex}}}|}{n}}\right)$). • Slower than what we had in Theorem 4.1: relaxation of the realizability • Equation [\(2\)](#page-53-2) corresponds to [\(Liang, 2016,](#page-45-2) [Th](#page-54-0)[eor](#page-56-0)[e](#page-52-0)[m](#page-53-1) [7](#page-56-0)[\)](#page-44-0) Michele Caprio (U of Manchester) [Credal Learning Theory](#page-0-0) December 10-15, 2024 2/3

No Realizability + Finite H

• Allowing for distribution drift

4 0 F

重目 のへぐ

Obtaining the Generalization Bounds No Realizability + Finite $\mathcal H$

• Allowing for distribution drift

(C. et al, 2024, Corollary 4.8)

Consider a natural number $k < n$. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set \mathcal{P} . Retain the other assumptions of Theorem 4.5.

Obtaining the Generalization Bounds No Realizability + Finite $\mathcal H$

• Allowing for distribution drift

(C. et al, 2024, Corollary 4.8)

Consider a natural number $k < n$. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set \mathcal{P} . Retain the other assumptions of Theorem 4.5. Then,

$$
\mathbb{P}\bigg[\bigg(L_{P_1}(\hat{h}_1) - L_{P_1} (h_{P_1}^{\star})\bigg) + \bigg(L_{P_2}(\hat{h}_2) - L_{P_2} (h_{P_2}^{\star})\bigg) \leq \epsilon^{\star\star}(\delta)\sqrt{\frac{n}{k(n-k)}}(\sqrt{k} + \sqrt{n-k})\bigg] \geq 1 - \delta,
$$

where $\epsilon^{\star\star}(\delta)$ is the same quantity as in Theorem 4.5, and \hat{h}_1 and \hat{h}_2 are defined as in Corollary 4.4.

Michele Caprio (U of Manchester) [Credal Learning Theory](#page-0-0) December 10-15, 2024 2/3

No Realizability + (Possibly) Infinite H

• Foregoing also finiteness of H

4 **D F**

No Realizability + (Possibly) Infinite H

• Assume zero-one loss, $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

4 0 F

 $F = \Omega Q$

No Realizability + (Possibly) Infinite H

• Assume zero-one loss, $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

$$
\bullet \mathcal{A} \doteq \{(x,y) \mapsto l((x,y),h) : h \in \mathcal{H}\}
$$

 $\bullet \ \sigma_1, \ldots, \sigma_n \sim \text{Unif}(\{-1, 1\})$

∢ □ ▶ ⊣ *←* □

 \triangleright 4 \equiv \triangleright \equiv \parallel \equiv \land \land \land

Obtaining the Generalization Bounds No Realizability + (Possibly) Infinite $\mathcal H$

• Assume zero-one loss, $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

$$
\bullet \mathcal{A} \doteq \{(x,y) \mapsto l((x,y),h) : h \in \mathcal{H}\}
$$

- $\bullet \ \sigma_1, \ldots, \sigma_n \sim \text{Unif}(\{-1,1\})$
- $R_{n, P^{\text{ex}}}(\mathcal{A}) \doteq \mathbb{E}_{P^{\text{ex}}}[\sup_{h \in \mathcal{H}} \frac{1}{n}]$ $\frac{1}{n}\sum_{i=1}^n \sigma_i I((x_i,y_i),h)]$

 \triangleright 4 \equiv \triangleright \equiv \parallel \equiv \land \land \land

Obtaining the Generalization Bounds No Realizability + (Possibly) Infinite $\mathcal H$

• Assume zero-one loss, $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

$$
\bullet \mathcal{A} \doteq \{(x,y) \mapsto l((x,y),h) : h \in \mathcal{H}\}
$$

$$
\bullet \ \sigma_1, \ldots, \sigma_n \sim \mathsf{Unif}(\{-1,1\})
$$

 $R_{n, P^{\text{ex}}}(\mathcal{A}) \doteq \mathbb{E}_{P^{\text{ex}}}[\sup_{h \in \mathcal{H}} \frac{1}{n}]$ $\frac{1}{n}\sum_{i=1}^n \sigma_i I((x_i,y_i),h)]$

(C. et al, 2024, Theorem 4.9)

Let $(x_1, y_1), \ldots, (x_n, y_n) \sim P$ i.i.d., where P is any element of credal set P. Let \hat{h} be the ERM, and h^\star be the best theoretical model. Fix any $\delta \in (0,1)$.

Obtaining the Generalization Bounds No Realizability + (Possibly) Infinite $\mathcal H$

• Assume zero-one loss, $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

$$
\bullet \mathcal{A} \doteq \{(x,y) \mapsto l((x,y),h) : h \in \mathcal{H}\}
$$

$$
\bullet \ \sigma_1, \ldots, \sigma_n \sim \mathsf{Unif}(\{-1,1\})
$$

 $R_{n, P^{\text{ex}}}(\mathcal{A}) \doteq \mathbb{E}_{P^{\text{ex}}}[\sup_{h \in \mathcal{H}} \frac{1}{n}]$ $\frac{1}{n}\sum_{i=1}^n \sigma_i I((x_i,y_i),h)]$

(C. et al, 2024, Theorem 4.9)

Let $(x_1, y_1), \ldots, (x_n, y_n) \sim P$ i.i.d., where P is any element of credal set P. Let \hat{h} be the ERM, and h^\star be the best theoretical model. Fix any $\delta \in (0,1)$. Then, for all $P \in \mathcal{P}$,

$$
\mathbb{P}\left[L_P(\hat{h})-L_P(h^{\star})\leq \epsilon^{\star\star\star}(\delta)\right]\geq 1-\delta,
$$

where

$$
\epsilon^{\star\star\star}(\delta) \doteq 4 \max_{P^{\text{ex}} \in \text{exp}} R_{n,P^{\text{ex}}}(\mathcal{A}) + \sqrt{\frac{2 \log(2/\delta)}{n}}.
$$

• Theorem 4.9 generalizes [\(Liang, 2016,](#page-45-2) Theorem 9), which focuses only on the "true" probability P^{\star} on $\mathcal{X}\times\mathcal{Y}$

4 **D F**

- Theorem 4.9 generalizes [\(Liang, 2016,](#page-45-2) Theorem 9), which focuses only on the "true" probability P^{\star} on $\mathcal{X}\times\mathcal{Y}$
	- Our result holds for all the plausible distributions in credal set P

- Theorem 4.9 generalizes [\(Liang, 2016,](#page-45-2) Theorem 9), which focuses only on the "true" probability P^{\star} on $\mathcal{X}\times\mathcal{Y}$
	- \bullet Our result holds for all the plausible distributions in credal set P
	- Hedge against distribution misspecification

- Theorem 4.9 generalizes [\(Liang, 2016,](#page-45-2) Theorem 9), which focuses only on the "true" probability P^{\star} on $\mathcal{X}\times\mathcal{Y}$
	- Our result holds for all the plausible distributions in credal set P
	- Hedge against distribution misspecification
- In real applications, we effectively cannot compute $R_{n,P^*}(A)$

 $A \equiv A$ \equiv $B \equiv$ \bigcirc $Q \cap$

- Theorem 4.9 generalizes [\(Liang, 2016,](#page-45-2) Theorem 9), which focuses only on the "true" probability P^{\star} on $\mathcal{X}\times\mathcal{Y}$
	- \bullet Our result holds for all the plausible distributions in credal set P
	- Hedge against distribution misspecification
- In real applications, we effectively cannot compute $R_{n,P^*}(A)$
- $R_{n}P_{\gamma}(A)$ can be approximated via the empirical Rademacher *complexity* $\hat{R}_n(\mathcal{A})$ *[\(Liang, 2016,](#page-45-2) Equation (219)), but*

B K E B E E MA G

- Theorem 4.9 generalizes [\(Liang, 2016,](#page-45-2) Theorem 9), which focuses only on the "true" probability P^{\star} on $\mathcal{X}\times\mathcal{Y}$
	- \bullet Our result holds for all the plausible distributions in credal set P
	- Hedge against distribution misspecification
- In real applications, we effectively cannot compute $R_{n,P^*}(A)$
- $R_{n}P_{\gamma}(A)$ can be approximated via the empirical Rademacher *complexity* $\hat{R}_n(\mathcal{A})$ *[\(Liang, 2016,](#page-45-2) Equation (219)), but*
	- \bullet Especially in the case of low cardinality training set, i.e., if n is not "large enough": possible poor approximation of the classical bound

 \rightarrow 4 F \rightarrow F H \rightarrow 9.9.0

- Theorem 4.9 generalizes [\(Liang, 2016,](#page-45-2) Theorem 9), which focuses only on the "true" probability P^{\star} on $\mathcal{X}\times\mathcal{Y}$
	- \bullet Our result holds for all the plausible distributions in credal set P
	- Hedge against distribution misspecification
- In real applications, we effectively cannot compute $R_{n,P^*}(A)$
- $R_{n}P_{\gamma}(A)$ can be approximated via the empirical Rademacher *complexity* $\hat{R}_n(\mathcal{A})$ *[\(Liang, 2016,](#page-45-2) Equation (219)), but*
	- \bullet Especially in the case of low cardinality training set, i.e., if n is not "large enough": possible poor approximation of the classical bound
	- **2** The collected dataset $\{(x_i, y_i)\}_{i=1}^n$ may well be a realization of a stochastic process governed by a distribution different than P^{\star}

트 N 4 트 N 트 트 - 이외어
- Theorem 4.9 generalizes [\(Liang, 2016,](#page-45-0) Theorem 9), which focuses only on the "true" probability P^{\star} on $\mathcal{X}\times\mathcal{Y}$
	- \bullet Our result holds for all the plausible distributions in credal set P
	- Hedge against distribution misspecification
- In real applications, we effectively cannot compute $R_{n,P^*}(A)$
- $R_{n}P_{\gamma}(A)$ can be approximated via the empirical Rademacher *complexity* $\hat{R}_n(\mathcal{A})$ *[\(Liang, 2016,](#page-45-0) Equation (219)), but*
	- \bullet Especially in the case of low cardinality training set, i.e., if n is not "large enough": possible poor approximation of the classical bound
	- **2** The collected dataset $\{(x_i, y_i)\}_{i=1}^n$ may well be a realization of a stochastic process governed by a distribution different than P^{\star}
		- **Empirical Rademacher complexity** $\hat{R}_n(A)$ **is not able to distinguish** between these two cases

K □ ▶ K 何 ▶ K 로 ▶ K 로 ▶ (토) ▶ 에이어

Obtaining the Generalization Bounds No Realizability + (Possibly) Infinite H

 $\overline{R}_{n, P^{\rm ex}}(\mathcal{A}) \doteq \max_{P^{\rm ex} \in {\rm ex}\mathcal{P}} R_{n, P^{\rm ex}}(\mathcal{A})$ is more conservative (looser bound), but

4 0 F

 $E|E \cap Q$

- $\overline{R}_{n, P^{\rm ex}}(\mathcal{A}) \doteq \max_{P^{\rm ex} \in {\rm ex}\mathcal{P}} R_{n, P^{\rm ex}}(\mathcal{A})$ is more conservative (looser bound), but
	- It can be computed explicitly since we know credal set P and its extreme elements exP

 $E|E \cap Q$

- $\overline{R}_{n, P^{\rm ex}}(\mathcal{A}) \doteq \max_{P^{\rm ex} \in {\rm ex}\mathcal{P}} R_{n, P^{\rm ex}}(\mathcal{A})$ is more conservative (looser bound), but
	- It can be computed explicitly since we know credal set P and its extreme elements exP
	- It holds for all $P \in \mathcal{P}$

[Go to Corollary 4.12](#page-78-0)

 $E|E \cap Q$

(C. et al, 2024, Corollary 4.10)

Retain the assumptions of Theorem 4.9. If ${\mathcal P}$ is the singleton $\{P^\star\}$, we retrieve [\(Liang, 2016,](#page-45-0) Theorem 9).

B K E B E E MA G

(C. et al, 2024, Corollary 4.10)

Retain the assumptions of Theorem 4.9. If ${\mathcal P}$ is the singleton $\{P^\star\}$, we retrieve [\(Liang, 2016,](#page-45-0) Theorem 9).

(C. et al, 2024, Corollary 4.11)

Retain the assumptions of Theorem 4.9. Denote by $Q \in \mathcal{P}$, $Q \neq P$, a generic distribution in P different from P. Pick any $\eta \in \mathbb{R}_{>0}$; if $diam_{TV}(\mathcal{P}) = \eta$, we have that

$$
\mathbb{P}\left[L_{Q}(\hat{h}) - L_{P}(h^{\star}) \leq \epsilon^{\star\star\star}(\delta) + \eta \right] \geq 1 - \delta,
$$

where $\epsilon^{\star\star\star}(\delta)$ is the same quantity as in Theorem 4.9.

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

Obtaining the Generalization Bounds

No Realizability + (Possibly) Infinite H

• Allowing for distribution drift

4 0 F

重目 のへぐ

Obtaining the Generalization Bounds No Realizability + (Possibly) Infinite $\mathcal H$

• Allowing for distribution drift

(C. et al, 2024, Corollary 4.12)

Consider a natural number $k < n$. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set \mathcal{P} . Retain the other assumptions of Theorem 4.9, and let

$$
\epsilon_{\text{shift}}^{\star\star\star} \doteq 4 \left[\overline{R}_{k,P^{\text{ex}}}(\mathcal{A}) + \overline{R}_{n-k,P^{\text{ex}}}(\mathcal{A}) \right] + \sqrt{\frac{2 \log(2/\delta)}{n(n-k)}} \left(\sqrt{n-k} + \sqrt{n} \right).
$$

 \blacksquare

Obtaining the Generalization Bounds No Realizability + (Possibly) Infinite $\mathcal H$

• Allowing for distribution drift

(C. et al, 2024, Corollary 4.12)

Consider a natural number $k < n$. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set P . Retain the other assumptions of Theorem 4.9, and let

$$
\epsilon_{\text{shift}}^{\star\star\star} \doteq 4 \left[\overline{R}_{k,P^{\text{ex}}}(\mathcal{A}) + \overline{R}_{n-k,P^{\text{ex}}}(\mathcal{A}) \right] + \sqrt{\frac{2 \log(2/\delta)}{n(n-k)}} \left(\sqrt{n-k} + \sqrt{n} \right).
$$

Then,

$$
\mathbb{P}\bigg[\bigg(L_{P_1}(\hat{h}_1) - L_{P_1}\left(h_{P_1}^{\star}\right)\bigg) + \bigg(L_{P_2}(\hat{h}_2) - L_{P_2}\left(h_{P_2}^{\star}\right)\bigg) \leq \epsilon_{\text{shift}}^{\star\star\star}\bigg] \geq 1 - \delta.
$$

 \blacksquare