Credal Learning Theory

Michele Caprio Joint work with Maryam Sultana, Eleni G. Elia, and Fabio Cuzzolin

Department of Computer Science, University of Manchester Manchester Centre for AI Fundamentals

Michele Caprio (U of Manchester)

Credal Learning Theory

December 10-15, 2024

1/9

• Statistical Learning Theory (SLT) is the foundation of Machine Learning

1= 9QC

- Statistical Learning Theory (SLT) is the foundation of Machine Learning
- Provides theoretical bounds for the risk of models learnt from a (single) training set

- Statistical Learning Theory (SLT) is the foundation of Machine Learning
- Provides theoretical bounds for the risk of models learnt from a (single) training set
 - Assumed to issue from a single unknown probability distribution

Problem: predicting an output y ∈ 𝔅 given an input x ∈ 𝔅, using mapping h : 𝔅 → 𝔅, h ∈ 𝔅

▲ ∃ ► ∃ =

- Problem: predicting an output y ∈ 𝔅 given an input x ∈ 𝔅, using mapping h : 𝔅 → 𝔅, h ∈ 𝔅
- Loss Function: $I: (\mathcal{X} \times \mathcal{Y}) \times \mathcal{H} \to \mathbb{R}$

ELE NOR

- Problem: predicting an output y ∈ 𝔅 given an input x ∈ 𝔅, using mapping h : 𝔅 → 𝔅, h ∈ 𝔅
- Loss Function: $I : (\mathcal{X} \times \mathcal{Y}) \times \mathcal{H} \to \mathbb{R}$
 - It measures the error committed by a model $h \in \mathcal{H}$

- Problem: predicting an output y ∈ 𝔅 given an input x ∈ 𝔅, using mapping h : 𝔅 → 𝔅, h ∈ 𝔅
- Loss Function: $I : (\mathcal{X} \times \mathcal{Y}) \times \mathcal{H} \to \mathbb{R}$
 - It measures the error committed by a model $h \in \mathcal{H}$
 - Zero-one loss is defined as $I((x, y), h) \doteq \mathbb{I}[y \neq h(x)]$

SIN NOR

- Problem: predicting an output y ∈ 𝔅 given an input x ∈ 𝔅, using mapping h : 𝔅 → 𝔅, h ∈ 𝔅
- Loss Function: $I : (\mathcal{X} \times \mathcal{Y}) \times \mathcal{H} \to \mathbb{R}$
 - It measures the error committed by a model $h \in \mathcal{H}$
 - Zero-one loss is defined as $I((x, y), h) \doteq \mathbb{I}[y \neq h(x)]$
- Input-output pairs are usually assumed to be generated i.i.d. by a probability distribution P*, which is unknown

▶ ∃ = 𝒫𝔅

• Expected risk – or expected loss – of the model h,

$$L(h) \equiv L_{P^{\star}}(h) \doteq \mathbb{E}_{P^{\star}}[I((x, y), h)]$$

=
$$\int_{\mathcal{X} \times \mathcal{Y}} I((x, y), h) P^{\star}(d(x, y)),$$

measures the expected value w.r.t. P^* of loss I

• Expected risk – or expected loss – of the model h,

$$L(h) \equiv L_{P^{\star}}(h) \doteq \mathbb{E}_{P^{\star}}[I((x, y), h)]$$
$$= \int_{\mathcal{X} \times \mathcal{Y}} I((x, y), h) P^{\star}(\mathsf{d}(x, y)),$$

measures the expected value w.r.t. P^{\star} of loss I

• Expected risk minimizer

$$h^{\star} \in \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} L(h),$$

is any hypothesis in ${\mathcal H}$ that minimizes the expected risk

Statistical Learning Theory Overview and Notation

- Consider a training dataset $D = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - $(x_1, y_1), \ldots, (x_n, y_n) \sim P^*$ i.i.d.

- E

▶ 王国 のへの

Statistical Learning Theory

Overview and Notation

- Consider a training dataset D = {(x₁, y₁), ..., (x_n, y_n)}
 (x₁, y₁), ..., (x_n, y_n) ~ P^{*} i.i.d.
- Empirical risk of hypothesis h

$$\hat{L}(h) = \frac{1}{n} \sum_{i=1}^{n} l((x_i, y_i), h)$$

ELE NOR

Statistical Learning Theory

Overview and Notation

- Consider a training dataset D = {(x₁, y₁), ..., (x_n, y_n)}
 (x₁, y₁), ..., (x_n, y_n) ~ P^{*} i.i.d.
- Empirical risk of hypothesis h

$$\hat{L}(h) = \frac{1}{n} \sum_{i=1}^{n} l((x_i, y_i), h)$$

• Empirical risk minimizer (ERM)

$$\hat{h} \in \operatorname*{arg\,min}_{h \in \mathcal{H}} \hat{L}(h)$$

- SLT seeks upper bounds on the excess risk
 - Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$

E SQA

- SLT seeks upper bounds on the excess risk
 - Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
 - $\bullet\,$ Under increasingly more relaxed assumptions about the nature of the hypotheses space ${\cal H}$

Statistical Learning Theory

Overview and Notation

- SLT seeks upper bounds on the excess risk
 - Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
 - $\bullet\,$ Under increasingly more relaxed assumptions about the nature of the hypotheses space ${\cal H}$
 - $\bullet \ \mathcal{H} \text{ is finite}$

E SQA

- SLT seeks upper bounds on the excess risk
 - Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
 - $\bullet\,$ Under increasingly more relaxed assumptions about the nature of the hypotheses space ${\cal H}$
 - $\bullet \ \mathcal{H} \ \text{is finite}$
 - There exists a model h^* with zero expected risk (realizability)

1 - nan

- SLT seeks upper bounds on the excess risk
 - Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
 - $\bullet\,$ Under increasingly more relaxed assumptions about the nature of the hypotheses space ${\cal H}$
 - $\bullet \ \mathcal{H} \ \text{is finite}$
 - There exists a model h^* with zero expected risk (realizability)
- But what should we do when distribution shifts are allowed?

- SLT seeks upper bounds on the excess risk
 - Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^{\star})$
 - $\bullet\,$ Under increasingly more relaxed assumptions about the nature of the hypotheses space ${\cal H}$
 - $\bullet \ \mathcal{H} \ \text{is finite}$
 - There exists a model h^* with zero expected risk (realizability)
- But what should we do when distribution shifts are allowed?
 - May cause issues of domain adaptation or domain generalization

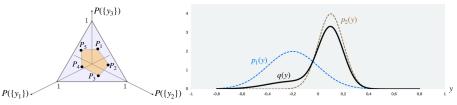
- SLT seeks upper bounds on the excess risk
 - Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
 - $\bullet\,$ Under increasingly more relaxed assumptions about the nature of the hypotheses space ${\cal H}$
 - $\bullet \ \mathcal{H}$ is finite
 - There exists a model h^* with zero expected risk (realizability)
- But what should we do when distribution shifts are allowed?
 - May cause issues of domain adaptation or domain generalization
 - Existing attempts: lack of generalizability, use of strong assumptions (Caprio et al., 2024, Section 2)

ELE NOR

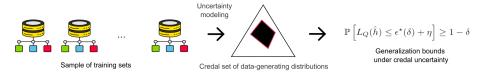
- SLT seeks upper bounds on the excess risk
 - Difference between the expected risk of the ERM $L(\hat{h})$, and the lowest expected risk $L(h^*)$
 - $\bullet\,$ Under increasingly more relaxed assumptions about the nature of the hypotheses space ${\cal H}$
 - $\bullet \ \mathcal{H} \ \text{is finite}$
 - There exists a model h^* with zero expected risk (realizability)
- But what should we do when distribution shifts are allowed?
 - May cause issues of domain adaptation or domain generalization
 - Existing attempts: lack of generalizability, use of strong assumptions (Caprio et al., 2024, Section 2)
 - We use Credal Sets to address this issue

I= nac

- Credal Set Levi (1980): A set of probabilities ${\cal P}$ that is closed and convex
- Finitely Generated Credal Set: A credal set ${\cal P}$ with finitely many extreme elements $ex{\cal P}$



A Summary of our Learning Framework



三日 のへの

Deriving a Credal Sets Available Evidence

• Suppose that our evidence is a finite sample of training sets, D_1, \ldots, D_N

1= 9QC

Deriving a Credal Sets

- Suppose that our evidence is a finite sample of training sets, D_1, \ldots, D_N
- $D_i = \{(x_{i,1}, y_{i,1}), \dots, (x_{i,n_i}, y_{i,n_i})\}$, for all $i \in \{1, \dots, N\}$

Deriving a Credal Sets

- Suppose that our evidence is a finite sample of training sets, D_1, \ldots, D_N
- $D_i = \{(x_{i,1}, y_{i,1}), \dots, (x_{i,n_i}, y_{i,n_i})\}$, for all $i \in \{1, \dots, N\}$
- $(x_{i,1}, y_{i,1}), \dots, (x_{i,n_i}, y_{i,n_i}) \sim P_i^*$ i.i.d., for all $i \in \{1, \dots, N\}$

1 - nan

Deriving a Credal Sets

- Suppose that our evidence is a finite sample of training sets, D_1, \ldots, D_N
- $D_i = \{(x_{i,1}, y_{i,1}), \dots, (x_{i,n_i}, y_{i,n_i})\}$, for all $i \in \{1, \dots, N\}$
- $(x_{i,1}, y_{i,1}), \dots, (x_{i,n_i}, y_{i,n_i}) \sim P_i^*$ i.i.d., for all $i \in \{1, \dots, N\}$
- P_i^{\star} need not be equal to P_i^{\star} , for all $i, j \in \{1, \dots, N\}$, $i \neq j$

ELE DOG

(C. et al, 2024, Theorem 4.1)

Let $(x_{N+1,1}, y_{N+1,1}), \ldots, (x_{N+1,n_{N+1}}, y_{N+1,n_{N+1}}) \equiv (x_1, y_1), \ldots, (x_n, y_n)$ be sampled i.i.d. from $P_{N+1}^* \equiv P \in \mathcal{P}$. Recall that the empirical risk minimizer is $\hat{h} \in \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n I((x_i, y_i), h)$. Assume

- there exists a realizable hypothesis, i.e. $h^{\star} \in \mathcal{H}$ such that $L_P(h^{\star}) = 0$
- ${\cal H}$ is finite
- zero-one loss $l((x, y), h) = \mathbb{I}[y \neq h(x)]$

(C. et al, 2024, Theorem 4.1)

Let $(x_{N+1,1}, y_{N+1,1}), \ldots, (x_{N+1,n_{N+1}}, y_{N+1,n_{N+1}}) \equiv (x_1, y_1), \ldots, (x_n, y_n)$ be sampled i.i.d. from $P_{N+1}^* \equiv P \in \mathcal{P}$. Recall that the empirical risk minimizer is $\hat{h} \in \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n l((x_i, y_i), h)$. Assume

- there exists a realizable hypothesis, i.e. $h^{\star} \in \mathcal{H}$ such that $L_{P}(h^{\star}) = 0$
- ${\cal H}$ is finite
- zero-one loss $l((x, y), h) = \mathbb{I}[y \neq h(x)]$

Fix any $\delta \in (0,1)$. Then,

$$\mathbb{P}\left[L_P(\hat{h}) \leq \epsilon^{\star}(\delta)\right] \geq 1 - \delta,$$

where $\epsilon^{\star}(\delta)$ is a well-defined quantity that depends only on δ and on the elements of ex \mathcal{P} .

6/9

(C. et al, 2024, Corollary 4.3)

Retain the assumptions of Theorem 4.1. We have that

$$\epsilon^{\star}(\delta) \leq \epsilon_{\mathsf{UB}}(\delta) \doteq rac{\log |\mathcal{H}| + \log \left(rac{1}{\delta}
ight)}{n}.$$

In turn, the following holds for all $P \in \Delta_{\mathcal{X} \times \mathcal{Y}}$,

$$\mathbb{P}\left[L_{P}(\hat{h}) \leq \epsilon_{\mathsf{UB}}(\delta)\right] \geq 1 - \delta.$$
(1)

• $\epsilon_{\sf UB}(\delta)$ is a uniform bound

(C. et al, 2024, Corollary 4.3)

Retain the assumptions of Theorem 4.1. We have that

$$\epsilon^{\star}(\delta) \leq \epsilon_{\mathsf{UB}}(\delta) \doteq rac{\log |\mathcal{H}| + \log \left(rac{1}{\delta}
ight)}{n}.$$

In turn, the following holds for all $P \in \Delta_{\mathcal{X} \times \mathcal{Y}}$,

$$\mathbb{P}\left[L_{P}(\hat{h}) \leq \epsilon_{\mathsf{UB}}(\delta)\right] \geq 1 - \delta.$$
(1)

- $\epsilon_{\sf UB}(\delta)$ is a uniform bound
- When only few samples are available, $\epsilon^*(\delta)$ much smaller than $\epsilon_{UB}(\delta)$

(C. et al, 2024, Corollary 4.3)

Retain the assumptions of Theorem 4.1. We have that

$$\epsilon^{\star}(\delta) \leq \epsilon_{\mathsf{UB}}(\delta) \doteq rac{\log |\mathcal{H}| + \log \left(rac{1}{\delta}
ight)}{n}.$$

In turn, the following holds for all $P \in \Delta_{\mathcal{X} \times \mathcal{Y}}$,

$$\mathbb{P}\left[L_{P}(\hat{h}) \leq \epsilon_{\mathsf{UB}}(\delta)\right] \geq 1 - \delta.$$
(1)

- $\epsilon_{\sf UB}(\delta)$ is a uniform bound
- When only few samples are available, $\epsilon^*(\delta)$ much smaller than $\epsilon_{UB}(\delta)$

•
$$\mathcal{O}\left(\frac{\log|\cup_{P^{ex}\in ex\mathcal{P}}B_{P^{ex}}|}{n}\right) \leq \mathcal{O}\left(\frac{\log|\mathcal{H}|}{n}\right)$$

(C. et al, 2024, Corollary 4.3)

Retain the assumptions of Theorem 4.1. We have that

$$\epsilon^{\star}(\delta) \leq \epsilon_{\mathsf{UB}}(\delta) \doteq rac{\log |\mathcal{H}| + \log \left(rac{1}{\delta}
ight)}{n}.$$

In turn, the following holds for all $P \in \Delta_{\mathcal{X} imes \mathcal{Y}}$,

$$\mathbb{P}\left[L_{P}(\hat{h}) \leq \epsilon_{\mathsf{UB}}(\delta)\right] \geq 1 - \delta.$$
(1)

- $\epsilon_{\sf UB}(\delta)$ is a uniform bound
- When only few samples are available, $\epsilon^*(\delta)$ much smaller than $\epsilon_{\sf UB}(\delta)$

•
$$\mathcal{O}\left(\frac{\log|\cup_{P^{ex}\in ex\mathcal{P}}B_{P^{ex}}|}{n}\right) \leq \mathcal{O}\left(\frac{\log|\mathcal{H}|}{n}\right)$$

• Equation (1) corresponds to (Liang, 2016, Theorem 4)

6/9

• Allowing for distribution drift

I= nac

Allowing for distribution drift

(C. et al, 2024, Corollary 4.4)

Consider a natural number k < n. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set \mathcal{P} . Retain the other assumptions of Theorem 4.1.

313

Allowing for distribution drift

(C. et al, 2024, Corollary 4.4)

Consider a natural number k < n. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set \mathcal{P} . Retain the other assumptions of Theorem 4.1. Then,

$$\mathbb{P}\left[L_{P_1}(\hat{h}_1)+L_{P_2}(\hat{h}_2)\leq\epsilon^\star(\delta)rac{n^2}{k(n-k)}
ight]\geq 1-\delta_2$$

where $\epsilon^{\star}(\delta)$ is the same quantity as in Theorem 4.1, and

Allowing for distribution drift

(C. et al, 2024, Corollary 4.4)

Consider a natural number k < n. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set \mathcal{P} . Retain the other assumptions of Theorem 4.1. Then,

$$\mathbb{P}\left[L_{P_1}(\hat{h}_1)+L_{P_2}(\hat{h}_2)\leq\epsilon^{\star}(\delta)rac{n^2}{k(n-k)}
ight]\geq 1-\delta,$$

where $\epsilon^\star(\delta)$ is the same quantity as in Theorem 4.1, and

$$\hat{h}_1 \in \operatorname*{arg\,min}_{h \in \mathcal{H}} rac{1}{k} \sum_{i=1}^k I((x_i, y_i), h), \quad \hat{h}_2 \in \operatorname*{arg\,min}_{h \in \mathcal{H}} rac{1}{n-k} \sum_{i=k+1}^n I((x_i, y_i), h).$$

• In (Caprio et al., 2024, Section 4.2): similar results when the realizability assumption is relaxed, but \mathcal{H} is kept finite

E SQA

- In (Caprio et al., 2024, Section 4.2): similar results when the realizability assumption is relaxed, but \mathcal{H} is kept finite
- In (Caprio et al., 2024, Section 4.3): similar results when the realizability assumption is relaxed, and \mathcal{H} is (potentially uncountably) infinite

• In the future, we plan to

三日 のへの

- In the future, we plan to
 - Extend our results to different losses

- In the future, we plan to
 - Extend our results to different losses
 - Derive PAC-like guarantees on the correct distribution P being an element of the credal set \mathcal{P}

- In the future, we plan to
 - Extend our results to different losses
 - Derive PAC-like guarantees on the correct distribution P being an element of the credal set \mathcal{P}
 - Validate our findings on real datasets

THANK YOU FOR YOUR ATTENTION!

三日 のへの

- Michele Caprio, Maryam Sultana, Eleni Elia, and Fabio Cuzzolin. Credal learning theory. To be submitted to NeurIPS 2024, 2024.
- Isaac Levi. The Enterprise of Knowledge. London, UK : MIT Press, 1980.
- Percy Liang. Statistical learning theory. Lecture notes for the course CS229T/STAT231 of Stanford University, 2016.

ELE SQC

Obtaining the Generalization Bounds No Realizability + Finite \mathcal{H}

• Foregoing the Realizability assumption

1= 9QC

(C. et al, 2024, Theorem 4.5)

Let $(x_1, y_1), \ldots, (x_n, y_n) \sim P$ i.i.d., where P is any element of credal set \mathcal{P} . Assume

- $\mathcal H$ is finite
- zero-one loss $l((x, y), h) = \mathbb{I}[y \neq h(x)]$

1 - nan

(C. et al, 2024, Theorem 4.5)

Let $(x_1, y_1), \ldots, (x_n, y_n) \sim P$ i.i.d., where P is any element of credal set \mathcal{P} . Assume

- ${\cal H}$ is finite
- zero-one loss $l((x, y), h) = \mathbb{I}[y \neq h(x)]$

Let \hat{h} be the empirical risk minimizer, and h^* be the best theoretical model. Fix any $\delta \in (0, 1)$. Then,

$$\mathbb{P}\left[L_{P}(\hat{h}) - L_{P}(h^{\star}) \leq \epsilon^{\star \star}(\delta)\right] \geq 1 - \delta,$$

where $\epsilon^{\star\star}(\delta)$ is a well-defined quantity that depends only on δ and on the elements of ex \mathcal{P} .

▶ Go to Corollary 4.7

Proof. The proof builds on that of Liang (2016, Theorem 7). Fix any $\epsilon > 0$, and any $P \in P$. Assume that the training dataset is given by *n* i.i.d. draws from *P*. By Liang (2016, Equations (158) and (186)), we have that

$$\mathbb{P}\left[L_{P}(\hat{h}) - L_{P}(h^{\star}) > \epsilon\right]$$

$$\leq \mathbb{P}\left[\sup_{h \in \mathcal{H}} \left|\hat{L}_{P}(h) - L_{P}(h)\right| > \frac{\epsilon}{2}\right] \quad (9)$$

$$< |\mathcal{H}| \cdot 2 \exp\left(-2n\left(\frac{\epsilon}{2}\right)^{2}\right) \doteq \delta(\epsilon).$$

Notice though, that we can improve on this bound, since we know that $P \in \mathcal{P}$, a finitely generated credal set. Let $B'_P \doteq \{h \in \mathcal{H} : |\hat{L}_P(h) - L_P(h)| > \epsilon/2\}$ be the set of "bad hypotheses" according to P. Then, it is immediate to see that

$$\sup_{h \in \mathcal{H}} \left| \hat{L}_P(h) - L_P(h) \right| = \sup_{h \in B'_P} \left| \hat{L}_P(h) - L_P(h) \right|.$$

Notice though that we do not know P; we only know it belongs to \mathcal{P} . Hence, we need to consider the set $B'_{\mathcal{P}}$ of bad hypotheses according to all the elements of \mathcal{P} , that is, $B'_{\mathcal{P}} \doteq \{h \in \mathcal{H} : \exists \mathcal{P} \in \mathcal{P}, |\hat{L}_{\mathcal{P}}(h) - L_{\mathcal{P}}(h)| > \epsilon/2\} = \cup_{\mathcal{P} \in \mathcal{P}} B'_{\mathcal{P}}.$ Since \mathcal{P} is a finitely generated credal set, by the Bauer Maximum Principle and the linearity of the expectation operator we have that $B'_{\mathcal{P}} = B'_{ex\mathcal{P}} \doteq \{h \in \mathcal{H} : \exists \mathcal{P}^{ex} \in ex\mathcal{P}, |\hat{L}_{\mathcal{P}}(h) - L_{\mathcal{P}}(h)| > \epsilon/2\} = \cup_{\mathcal{P}^{ex} \in ex\mathcal{P}} B'_{P^{ex}}.$ Hence, we obtain

$$\sup_{h \in \mathcal{H}} \left| \hat{L}_P(h) - L_P(h) \right| = \sup_{h \in B'_{exP}} \left| \hat{L}_P(h) - L_P(h) \right|.$$

In turn, (9) implies that

$$\begin{split} \mathbb{P} \big[L_P(\hat{h}) - L_P(h^*) > \epsilon \big] \\ & \leq \mathbb{P} \left[\sup_{h \in B_{\mathrm{x}\mathcal{P}}^r} \left| \hat{L}_P(h) - L_P(h) \right| > \frac{\epsilon}{2} \right] \\ & < |B_{\mathrm{ex}\mathcal{P}}^r| \cdot 2 \exp\left(-2n\left(\frac{\epsilon}{2}\right)^2 \right) \doteq \delta_{\mathrm{ex}\mathcal{P}}. \end{split}$$

Rearranging, we obtain

$$\epsilon = \sqrt{\frac{2\left(\log|B'_{ex\mathcal{P}}| + \log\left(\frac{2}{\delta_{ex\mathcal{P}}}\right)\right)}{n}},\qquad(10)$$

so if δ is fixed, we can write $\epsilon \equiv \epsilon^{\star\star}(\delta)$. In turn, this implies that $\mathbb{P}[L_P(\hat{h}) - L_P(h^\star) > \epsilon^{\star\star}(\delta)] < \delta$, or equivalently, $\mathbb{P}[L_P(\hat{h}) - L_P(h^\star) \le \epsilon^{\star\star}(\delta)] \ge 1 - \delta$. \Box

=== *)Q(~

(C. et al, 2024, Corollary 4.6)

Retain the assumptions of Theorem 4.5. Denote by $Q \in \mathcal{P}$, $Q \neq P$, a generic distribution in \mathcal{P} different from P. Pick any $\eta \in \mathbb{R}_{>0}$; if the TV-diameter diam_{TV}(\mathcal{P}) = η , we have that

$$\mathbb{P}\left[L_{Q}(\hat{h}) - L_{P}(h^{\star}) \leq \epsilon^{\star \star}(\delta) + \eta\right] \geq 1 - \delta,$$

where $\epsilon^{\star\star}(\delta)$ is the same quantity as in Theorem 4.5.

(C. et al, 2024, Corollary 4.6)

Retain the assumptions of Theorem 4.5. Denote by $Q \in \mathcal{P}$, $Q \neq P$, a generic distribution in \mathcal{P} different from P. Pick any $\eta \in \mathbb{R}_{>0}$; if the TV-diameter diam_{TV}(\mathcal{P}) = η , we have that

$$\mathbb{P}\left[L_{Q}(\hat{h}) - L_{P}(h^{\star}) \leq \epsilon^{\star\star}(\delta) + \eta\right] \geq 1 - \delta,$$

where $\epsilon^{\star\star}(\delta)$ is the same quantity as in Theorem 4.5.

• Probabilistic bound for the expected risk $L_Q(\hat{h})$ of the ERM \hat{h} , calculated w.r.t. the wrong distribution Q

(C. et al, 2024, Corollary 4.6)

Retain the assumptions of Theorem 4.5. Denote by $Q \in \mathcal{P}$, $Q \neq P$, a generic distribution in \mathcal{P} different from P. Pick any $\eta \in \mathbb{R}_{>0}$; if the TV-diameter diam_{TV}(\mathcal{P}) = η , we have that

$$\mathbb{P}\left[L_{Q}(\hat{h}) - L_{P}(h^{\star}) \leq \epsilon^{\star \star}(\delta) + \eta\right] \geq 1 - \delta,$$

where $\epsilon^{\star\star}(\delta)$ is the same quantity as in Theorem 4.5.

- Probabilistic bound for the expected risk $L_Q(\hat{h})$ of the ERM \hat{h} , calculated w.r.t. the wrong distribution Q
 - Any distribution in \mathcal{P} different from the one generating the training set

2/3

No Realizability + Finite \mathcal{H}

(C. et al, 2024, Corollary 4.7)

Retain the assumptions of Theorem 4.5. Then,

$$\epsilon^{\star\star}(\delta) \leq \epsilon_{\mathsf{UB}}'(\delta) \doteq \sqrt{rac{2\left(\log |\mathcal{H}| + \log\left(rac{2}{\delta}
ight)
ight)}{n}}.$$

In turn, for all $P \in \Delta_{\mathcal{X} \times \mathcal{Y}}$,

$$\mathbb{P}\left[L_{P}(\hat{h}) - L_{P}(h^{\star}) \le \epsilon_{\mathsf{UB}}^{\prime}(\delta)\right] \ge 1 - \delta,$$
(2)

• Main difference with Theorem 4.1: in Theorem 4.5, $L_P(\hat{h}) - L_P(h^*)$ behaves as $\mathcal{O}\left(\sqrt{\frac{\log|\cup_{P^{ex} \in ex\mathcal{P}}B'_{P^{ex}}|}{n}}\right)$

- E E - 990

No Realizability + Finite \mathcal{H}

(C. et al, 2024, Corollary 4.7)

Retain the assumptions of Theorem 4.5. Then,

$$\epsilon^{\star\star}(\delta) \leq \epsilon_{\mathsf{UB}}'(\delta) \doteq \sqrt{rac{2\left(\log |\mathcal{H}| + \log\left(rac{2}{\delta}
ight)
ight)}{n}}.$$

In turn, for all $P \in \Delta_{\mathcal{X} \times \mathcal{Y}}$,

$$\mathbb{P}\left[L_{P}(\hat{h}) - L_{P}(h^{\star}) \le \epsilon_{\mathsf{UB}}^{\prime}(\delta)\right] \ge 1 - \delta,$$
(2)

Main difference with Theorem 4.1: in Theorem 4.5, L_P(ĥ) − L_P(h^{*}) behaves as O (√ (10g |∪_{P^{ex}∈exP} B'_{P^{ex}|})/n)
 Slower than what we had in Theorem 4.1: relaxation of the realizability

No Realizability + Finite \mathcal{H}

(C. et al, 2024, Corollary 4.7)

Retain the assumptions of Theorem 4.5. Then,

$$\epsilon^{\star\star}(\delta) \leq \epsilon_{\mathsf{UB}}'(\delta) \doteq \sqrt{rac{2\left(\log |\mathcal{H}| + \log\left(rac{2}{\delta}
ight)
ight)}{n}}.$$

In turn, for all $P \in \Delta_{\mathcal{X} \times \mathcal{V}}$,

$$\mathbb{P}\left[L_{P}(\hat{h}) - L_{P}(h^{\star}) \le \epsilon_{\mathsf{UB}}^{\prime}(\delta)\right] \ge 1 - \delta,$$
(2)

• Main difference with Theorem 4.1: in Theorem 4.5, $L_P(\hat{h}) - L_P(h^*)$ behaves as $\mathcal{O}\left(\sqrt{\frac{\log|\cup_{P^{ex}\in ex\mathcal{P}}B'_{P^{ex}}|}{n}}\right)$ • Slower than what we had in Theorem 4.1: relaxation of the realizability • Equation (2) corresponds to (Liang, 2016, Theorem 7) 2/3

No Realizability + Finite \mathcal{H}

• Allowing for distribution drift

ヨニ のへで

• Allowing for distribution drift

(C. et al, 2024, Corollary 4.8)

Consider a natural number k < n. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set \mathcal{P} . Retain the other assumptions of Theorem 4.5.

• Allowing for distribution drift

(C. et al, 2024, Corollary 4.8)

Consider a natural number k < n. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set \mathcal{P} . Retain the other assumptions of Theorem 4.5. Then,

$$\mathbb{P}\left[\left(L_{P_1}(\hat{h}_1) - L_{P_1}(h_{P_1}^{\star})\right) + \left(L_{P_2}(\hat{h}_2) - L_{P_2}(h_{P_2}^{\star})\right) \\ \leq \epsilon^{\star\star}(\delta)\sqrt{\frac{n}{k(n-k)}}(\sqrt{k} + \sqrt{n-k})\right] \geq 1 - \delta,$$

where $\epsilon^{\star\star}(\delta)$ is the same quantity as in Theorem 4.5, and \hat{h}_1 and \hat{h}_2 are defined as in Corollary 4.4.

• Foregoing also finiteness of ${\cal H}$

E SQA

No Realizability + (Possibly) Infinite \mathcal{H}

• Assume zero-one loss, $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

• Assume zero-one loss, $l((x, y), h) = \mathbb{I}[y \neq h(x)]$

•
$$\mathcal{A} \doteq \{(x, y) \mapsto l((x, y), h) : h \in \mathcal{H}\}$$

• $\sigma_1, ..., \sigma_n \sim \mathsf{Unif}(\{-1, 1\})$

• Assume zero-one loss, $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

•
$$\mathcal{A} \doteq \{(x, y) \mapsto l((x, y), h) : h \in \mathcal{H}\}$$

- $\sigma_1, \ldots, \sigma_n \sim \mathsf{Unif}(\{-1, 1\})$
- $R_{n,P^{ex}}(\mathcal{A}) \doteq \mathbb{E}_{P^{ex}}[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i I((x_i, y_i), h)]$

JOC ELE

• Assume zero-one loss, $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

•
$$\mathcal{A} \doteq \{(x, y) \mapsto l((x, y), h) : h \in \mathcal{H}\}$$

•
$$\sigma_1, \ldots, \sigma_n \sim \mathsf{Unif}(\{-1, 1\})$$

• $R_{n,P^{ex}}(\mathcal{A}) \doteq \mathbb{E}_{P^{ex}}[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i l((x_i, y_i), h)]$

(C. et al, 2024, Theorem 4.9)

Let $(x_1, y_1), \ldots, (x_n, y_n) \sim P$ i.i.d., where P is any element of credal set \mathcal{P} . Let \hat{h} be the ERM, and h^* be the best theoretical model. Fix any $\delta \in (0, 1)$.

• Assume zero-one loss, $I((x, y), h) = \mathbb{I}[y \neq h(x)]$

•
$$\mathcal{A} \doteq \{(x, y) \mapsto l((x, y), h) : h \in \mathcal{H}\}$$

•
$$\sigma_1, \ldots, \sigma_n \sim \mathsf{Unif}(\{-1, 1\})$$

• $R_{n,P^{ex}}(\mathcal{A}) \doteq \mathbb{E}_{P^{ex}}[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i I((x_i, y_i), h)]$

(C. et al, 2024, Theorem 4.9)

Let $(x_1, y_1), \ldots, (x_n, y_n) \sim P$ i.i.d., where P is any element of credal set \mathcal{P} . Let \hat{h} be the ERM, and h^* be the best theoretical model. Fix any $\delta \in (0, 1)$. Then, for all $P \in \mathcal{P}$,

$$\mathbb{P}\left[L_P(\hat{h}) - L_P(h^*) \le \epsilon^{***}(\delta)\right] \ge 1 - \delta,$$

where

$$\epsilon^{\star\star\star}(\delta) \doteq 4 \max_{P^{ex} \in ex\mathcal{P}} R_{n,P^{ex}}(\mathcal{A}) + \sqrt{\frac{2\log(2/\delta)}{n}}$$

 Theorem 4.9 generalizes (Liang, 2016, Theorem 9), which focuses only on the "true" probability P* on X × Y

EL SQA

- Theorem 4.9 generalizes (Liang, 2016, Theorem 9), which focuses only on the "true" probability P* on X × Y
 - $\bullet\,$ Our result holds for all the plausible distributions in credal set ${\cal P}$

E SQA

- Theorem 4.9 generalizes (Liang, 2016, Theorem 9), which focuses only on the "true" probability P* on X × Y
 - $\bullet\,$ Our result holds for all the plausible distributions in credal set ${\cal P}$
 - Hedge against distribution misspecification

- Theorem 4.9 generalizes (Liang, 2016, Theorem 9), which focuses only on the "true" probability P* on X × Y
 - $\bullet\,$ Our result holds for all the plausible distributions in credal set ${\cal P}$
 - Hedge against distribution misspecification
- In real applications, we effectively cannot compute $R_{n,P^*}(\mathcal{A})$

- Theorem 4.9 generalizes (Liang, 2016, Theorem 9), which focuses only on the "true" probability P* on X × Y
 - $\bullet\,$ Our result holds for all the plausible distributions in credal set ${\cal P}$
 - Hedge against distribution misspecification
- In real applications, we effectively cannot compute $R_{n,P^{\star}}(\mathcal{A})$
- R_{n,P*}(A) can be approximated via the *empirical Rademacher* complexity R̂_n(A) (Liang, 2016, Equation (219)), but

- Theorem 4.9 generalizes (Liang, 2016, Theorem 9), which focuses only on the "true" probability P* on X × Y
 - $\bullet\,$ Our result holds for all the plausible distributions in credal set ${\cal P}$
 - Hedge against distribution misspecification
- In real applications, we effectively cannot compute $R_{n,P^{\star}}(\mathcal{A})$
- R_{n,P*}(A) can be approximated via the *empirical Rademacher* complexity R̂_n(A) (Liang, 2016, Equation (219)), but
 - Especially in the case of low cardinality training set, i.e., if n is not "large enough": possible poor approximation of the classical bound

A ∃ ► ∃ ∃ < < < </p>

- Theorem 4.9 generalizes (Liang, 2016, Theorem 9), which focuses only on the "true" probability P* on X × Y
 - $\bullet\,$ Our result holds for all the plausible distributions in credal set ${\cal P}$
 - Hedge against distribution misspecification
- In real applications, we effectively cannot compute $R_{n,P^{\star}}(\mathcal{A})$
- R_{n,P*}(A) can be approximated via the *empirical Rademacher* complexity R̂_n(A) (Liang, 2016, Equation (219)), but
 - Especially in the case of low cardinality training set, i.e., if n is not "large enough": possible poor approximation of the classical bound
 - 2 The collected dataset $\{(x_i, y_i)\}_{i=1}^n$ may well be a realization of a stochastic process governed by a distribution different than P^*

⇒ ↓ ≡ ↓ ≡ ⊨ √ Q ∩

- Theorem 4.9 generalizes (Liang, 2016, Theorem 9), which focuses only on the "true" probability P* on X × Y
 - $\bullet\,$ Our result holds for all the plausible distributions in credal set ${\cal P}$
 - Hedge against distribution misspecification
- In real applications, we effectively cannot compute $R_{n,P^{\star}}(\mathcal{A})$
- R_{n,P*}(A) can be approximated via the *empirical Rademacher* complexity R̂_n(A) (Liang, 2016, Equation (219)), but
 - Especially in the case of low cardinality training set, i.e., if n is not "large enough": possible poor approximation of the classical bound
 - 2 The collected dataset $\{(x_i, y_i)\}_{i=1}^n$ may well be a realization of a stochastic process governed by a distribution different than P^*
 - Empirical Rademacher complexity R̂_n(A) is not able to distinguish between these two cases

⇒ ↓ ≡ ↓ ≡ |= √Q ∩

*R*_{n,P^{ex}}(A) ≐ max_{P^{ex}∈ex} *P R*_{n,P^{ex}}(A) is more conservative (looser bound), but

三日 のへの

- *R*_{n,P^{ex}}(A) ≐ max_{P^{ex}∈ex} *P* R_{n,P^{ex}}(A) is more conservative (looser bound), but
 - It can be computed explicitly since we know credal set ${\cal P}$ and its extreme elements $ex{\cal P}$

- *R*_{n,P^{ex}}(A) ≐ max_{P^{ex}∈ex} *P* R_{n,P^{ex}}(A) is more conservative (looser bound), but
 - It can be computed explicitly since we know credal set ${\cal P}$ and its extreme elements $ex{\cal P}$
 - It holds for all $P \in \mathcal{P}$

▶ Go to Corollary 4.12

(C. et al, 2024, Corollary 4.10)

Retain the assumptions of Theorem 4.9. If \mathcal{P} is the singleton $\{P^*\}$, we retrieve (Liang, 2016, Theorem 9).

三日 のへの

(C. et al, 2024, Corollary 4.10)

Retain the assumptions of Theorem 4.9. If \mathcal{P} is the singleton $\{P^{\star}\}$, we retrieve (Liang, 2016, Theorem 9).

(C. et al, 2024, Corollary 4.11)

Retain the assumptions of Theorem 4.9. Denote by $Q \in \mathcal{P}$, $Q \neq P$, a generic distribution in \mathcal{P} different from P. Pick any $\eta \in \mathbb{R}_{>0}$; if diam_{TV}(\mathcal{P}) = η , we have that

$$\mathbb{P}\left[L_Q(\hat{h}) - L_P(h^\star) \le \epsilon^{\star\star\star}(\delta) + \eta\right] \ge 1 - \delta,$$

where $\epsilon^{\star\star\star}(\delta)$ is the same quantity as in Theorem 4.9.

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

No Realizability + (Possibly) Infinite \mathcal{H}

• Allowing for distribution drift

EL SQA

Allowing for distribution drift

(C. et al, 2024, Corollary 4.12)

Consider a natural number k < n. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set \mathcal{P} . Retain the other assumptions of Theorem 4.9, and let

$$\epsilon_{\text{shift}}^{\star\star\star} \doteq 4 \left[\overline{R}_{k,P^{\text{ex}}}(\mathcal{A}) + \overline{R}_{n-k,P^{\text{ex}}}(\mathcal{A}) \right] + \sqrt{\frac{2\log(2/\delta)}{n(n-k)}} \left(\sqrt{n-k} + \sqrt{n} \right).$$

Allowing for distribution drift

(C. et al, 2024, Corollary 4.12)

Consider a natural number k < n. Let $(x_1, y_1), \ldots, (x_k, y_k) \sim P_1$ i.i.d., and $(x_{k+1}, y_{k+1}), \ldots, (x_n, y_n) \sim P_2$ i.i.d., where P_1, P_2 are two generic elements of credal set \mathcal{P} . Retain the other assumptions of Theorem 4.9, and let

$$\epsilon_{\text{shift}}^{\star\star\star} \doteq 4 \left[\overline{R}_{k,P^{\text{ex}}}(\mathcal{A}) + \overline{R}_{n-k,P^{\text{ex}}}(\mathcal{A}) \right] + \sqrt{\frac{2\log(2/\delta)}{n(n-k)}} \left(\sqrt{n-k} + \sqrt{n} \right).$$

Then,

$$\mathbb{P}\left[\left(L_{P_1}(\hat{h}_1) - L_{P_1}\left(h_{P_1}^{\star}\right)\right) + \left(L_{P_2}(\hat{h}_2) - L_{P_2}\left(h_{P_2}^{\star}\right)\right) \leq \epsilon_{\mathsf{shift}}^{\star\star\star}\right] \geq 1 - \delta.$$