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Neural ODE
It models the continuous dynamics of hidden states with a learnable ODE system:

dh(t)
dt

= fθ(h(t), t), h(T) = h(0) +

T∫
0

fθ(h(t), t)dt. (1)

Problem in Neural ODE
Without special treatment, merely stacking additional layers in the temporal derivatives
does not necessarily enhance Neural ODE performance.
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Batch Normalization
BN performs a re-centering and a re-scaling operation on the given input by subtracting
the mean and dividing by the standard deviation:

BN(xi) = BNγ,α(xi) =
xi − µ√
σ2 + ϵ

γ + α. (2)

Problem in Neural ODE + Batch Normalization
BN uses a single pair of µ and σ2 for normalization, while the output statistics from Neural
ODE are time-dependent. Thus, BN can not correctly normalize Neural ODE’s output.
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What if we use µt and σ2
t for each time t?

Due to the adoption of adaptive ODE solver, the population statistics associated with the
time point t′j ∈ T ′, required by the temporal discretization during inference, might not be
available if the time value t′j is never encountered during training.

Temporal Adaptive Batch Normalization

We associate the time grid t⋆m with population mean µ⋆
m and population variance σ⋆,2

m , as
well as learnable parameters γ⋆

m and α⋆
m for every m = 0, 1, 2, · · · ,M. Given any time t, get

(µt, σ
2
t , γt, αt) by interpolating (µ⋆

m, σ
⋆,2
m , γ⋆

m, α
⋆
m) over time.
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Temporal Adaptive Batch Normalization

TABNγ⋆,α⋆(xi,j) =
xi,j − µj√
σ2

j + ϵ
γj + αj, where xi,j = w · hi(tj) + b, (3)

µj = G(tj,µ
⋆, T ⋆), σ2

j = G(tj,σ
⋆,2, T ⋆), γj = G(tj,γ

⋆, T ⋆), αj = G(tj,α
⋆, T ⋆), (4)

G(t, a, T ) =
tl+1 − t
tl+1 − tl

al +
t − tl

tl+1 − tl
al+1. (5)
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Scalable Neural ODE
When the layer count exceeds 10, vanilla Neural ODEs fails due to numerical instability.
In contrast, the incorporation of TA-BN enables deeper layers within Neural ODE as the
learnable derivatives, scaling up the model size and enhancing accuracy.

20 40 60 80 100 120
0.41

0.58

0.75

0.92

Epoch

T
es
t
A
cc
u
ra
cy

NODE w/o BN (18 layers)

NODE w/o BN (12 layers)

NODE w/o BN (10 layers)

NODE w/o BN (8 layers)

NODE w/o BN (6 layers)

NODE w/o BN (4 layers)

20 40 60 80 100 120
0.41

0.58

0.75

0.92

Epoch

T
es
t
A
cc
u
ra
cy

NODE w/ TA-BN (18 layers)

NODE w/ TA-BN (12 layers)

NODE w/ TA-BN (10 layers)

NODE w/ TA-BN (8 layers)

NODE w/ TA-BN (6 layers)

NODE w/ TA-BN (4 layers)

20 40 60 80 100 120
0.41

0.58

0.75

0.92

Epoch

T
es
t
A
cc
u
ra
cy

NODE w/ TA-BN (18 layers)

NODE w/ TA-BN (12 layers)

NODE w/ TA-BN (10 layers)

NODE w/o BN (18 layers)

NODE w/o BN (12 layers)

NODE w/o BN (10 layers)

Figure: CIFAR-10 accuracies with increasing sizes of the backbones for learnable derivatives. These
figures illustrate the scaling up of Neural ODEs without BN (left) and Neural ODEs with TA-BN
(middle). We also compare the accuracies of these two settings in one figure (right).
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Efficient Neural ODE
Neural ODEs with TA-BN achieves better accuracies and parameter efficiency than
existing Neural ODEs.

Model
MNIST CIFAR10 SVHN CIFAR100 Tiny-Imagenet

Accuracy #Params Accuracy #Params Accuracy #Params Accuracy #Params Accuracy #Params

IL-NODE 0.991 21k 0.734 36k - - - - - -
2nd-Ord2 0.992 20k 0.728 35k - - - - - -
HBNODE 0.983 86k 0.622 173k - - - - - -

GHBNODE3 0.987 85k 0.605 173k - - - - - -
Aug-NODE4 0.982 84k 0.606 172k 0.835 172k N/A N/A N/A 366k

STEER5 0.986 84k 0.621 172k 0.841 172k N/A N/A N/A N/A
w/o BN 0.989±0.001 37k 0.517±0.049 2.2M 0.096±0.025 2.2M 0.246±0.084 2.2M - 2.2M

w/ Pop-TI BN 0.973±0.011 37k 0.548±0.087 2.2M 0.241±0.123 2.2M 0.251±0.112 2.2M 0.044±0.007 2.2M
w/ Mini-batch BN 0.962±0.013 37k 0.822±0.095 2.2M 0.906±0.031 2.2M 0.492±0.176 2.2M 0.200±0.006 2.2M

w/ TA-BN 0.988±0.001 37k 0.748±0.059 70k 0.953±0.002 220k 0.576±0.016 220k 0.436±0.013 220k
(ours) 0.988±0.001 220k 0.910±0.010 2.2M 0.958±0.004 2.2M 0.664±0.025 2.2M 0.512±0.008 2.2M

2Stefano Massaroli et al. (2020). “Dissecting neural odes”. In: Advances in Neural Information Processing Systems 33, pp. 3952–3963.
3Hedi Xia et al. (2021). “Heavy ball neural ordinary differential equations”. In: Advances in Neural Information Processing Systems 34,

pp. 18646–18659.
4Emilien Dupont, Arnaud Doucet, and Yee Whye Teh (2019). “Augmented neural odes”. In: Advances in neural information processing systems 32.
5Arnab Ghosh et al. (2020). “STEER: Simple temporal regularization for neural ode”. In: Advances in Neural Information Processing Systems 33,

pp. 14831–14843.
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THANK YOU!


