

Improving Neural ODE Training with Temporal Adaptive Batch Normalization

Su Zheng^{†1}, Zhengqi Gao^{‡1}, Fan-Keng Sun[‡], Duane S. Boning[‡], Bei Yu[†], Martin Wong[†]

[†] The Chinese University of Hong Kong[‡] Massachusetts Institute of Technology

Dec. 12, 2024

¹The first two authors contribute equally.

Introduction

Neural ODE

It models the continuous dynamics of hidden states with a learnable ODE system:

$$\frac{d\mathbf{h}(t)}{dt} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{h}(t), t), \quad \mathbf{h}(T) = \mathbf{h}(0) + \int_{0}^{T} \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{h}(t), t) dt.$$
(1)

Problem in Neural ODE

Without special treatment, merely stacking additional layers in the temporal derivatives does not necessarily enhance Neural ODE performance.

Introduction

Batch Normalization

BN performs a re-centering and a re-scaling operation on the given input by subtracting the mean and dividing by the standard deviation:

$$BN(x_i) = BN_{\gamma,\alpha}(x_i) = \frac{x_i - \mu}{\sqrt{\sigma^2 + \epsilon}}\gamma + \alpha.$$
 (2)

Problem in Neural ODE + Batch Normalization

BN uses a single pair of μ and σ^2 for normalization, while the output statistics from Neural ODE are time-dependent. Thus, BN can not correctly normalize Neural ODE's output.

Methodology

What if we use μ_t and σ_t^2 for each time *t*?

Due to the adoption of adaptive ODE solver, the population statistics associated with the time point $t'_j \in \mathcal{T}'$, required by the temporal discretization during inference, might not be available if the time value t'_i is never encountered during training.

Temporal Adaptive Batch Normalization

We associate the time grid t_m^* with population mean μ_m^* and population variance $\sigma_m^{\star,2}$, as well as learnable parameters γ_m^* and α_m^* for every $m = 0, 1, 2, \dots, M$. Given any time *t*, get $(\mu_t, \sigma_t^2, \gamma_t, \alpha_t)$ by interpolating $(\mu_m^*, \sigma_m^{\star,2}, \gamma_m^*, \alpha_m^*)$ over time.

Methodology

Temporal Adaptive Batch Normalization

$$\text{TABN}_{\gamma^{\star}, \boldsymbol{\alpha}^{\star}}(x_{i,j}) = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}} \gamma_j + \alpha_j, \text{ where } x_{i,j} = w \cdot h_i(t_j) + b, \tag{3}$$

$$\mu_j = G(t_j, \boldsymbol{\mu}^*, \mathcal{T}^*), \ \sigma_j^2 = G(t_j, \boldsymbol{\sigma}^{*,2}, \mathcal{T}^*), \ \gamma_j = G(t_j, \boldsymbol{\gamma}^*, \mathcal{T}^*), \ \alpha_j = G(t_j, \boldsymbol{\alpha}^*, \mathcal{T}^*),$$
(4)

$$G(t, \mathbf{a}, \mathcal{T}) = \frac{t_{l+1} - t}{t_{l+1} - t_l} a_l + \frac{t - t_l}{t_{l+1} - t_l} a_{l+1}.$$
(5)

Experiments

Scalable Neural ODE

When the layer count exceeds 10, vanilla Neural ODEs fails due to numerical instability. In contrast, the incorporation of TA-BN enables deeper layers within Neural ODE as the learnable derivatives, scaling up the model size and enhancing accuracy.

Figure: CIFAR-10 accuracies with increasing sizes of the backbones for learnable derivatives. These figures illustrate the scaling up of Neural ODEs without BN (left) and Neural ODEs with TA-BN (middle). We also compare the accuracies of these two settings in one figure (right).

Experiments

Efficient Neural ODE

Neural ODEs with TA-BN achieves better accuracies and parameter efficiency than existing Neural ODEs.

Model	MNIST		CIFAR10		SVHN		CIFAR100		Tiny-Imagenet	
	Accuracy	#Params								
IL-NODE	0.991	21k	0.734	36k	-	-	-	-	-	-
2nd-Ord ²	0.992	20k	0.728	35k	-	-	-	-	-	-
HBNODE	0.983	86k	0.622	173k	-	-	-	-	-	-
GHBNODE ³	0.987	85k	0.605	173k	-	-	-	-	-	-
Aug-NODE ⁴	0.982	84k	0.606	172k	0.835	172k	N/A	N/A	N/A	366k
STEER ⁵	0.986	84k	0.621	172k	0.841	172k	N/A	N/A	N/A	N/A
w/o BN	$0.989 {\pm} 0.001$	37k	$0.517 {\pm} 0.049$	2.2M	0.096 ± 0.025	2.2M	$0.246 {\pm} 0.084$	2.2M	-	2.2M
w/ Pop-TI BN	$0.973 {\pm} 0.011$	37k	$0.548 {\pm} 0.087$	2.2M	0.241 ± 0.123	2.2M	$0.251 {\pm} 0.112$	2.2M	$0.044 {\pm} 0.007$	2.2M
w/ Mini-batch BN	0.962 ± 0.013	37k	0.822 ± 0.095	2.2M	0.906 ± 0.031	2.2M	$0.492{\pm}0.176$	2.2M	0.200 ± 0.006	2.2M
w/TA-BN	$0.988 {\pm} 0.001$	37k	0.748±0.059	70k	0.953±0.002	220k	$0.576 {\pm} 0.016$	220k	0.436 ± 0.013	3 220k
(ours)	$0.988 {\pm} 0.001$	220k	$0.910{\pm}0.010$	2.2M	$0.958 {\pm} 0.004$	2.2M	$0.664{\pm}0.025$	2.2M	$0.512 {\pm} 0.008$	3 2.2M

²Stefano Massaroli et al. (2020). "Dissecting neural odes". In: Advances in Neural Information Processing Systems 33, pp. 3952–3963.

³Hedi Xia et al. (2021). "Heavy ball neural ordinary differential equations". In: Advances in Neural Information Processing Systems 34, pp. 18646–18659.

⁴Emilien Dupont, Arnaud Doucet, and Yee Whye Teh (2019). "Augmented neural odes". In: Advances in neural information processing systems 32.

⁵Arnab Ghosh et al. (2020). "STEER: Simple temporal regularization for neural ode". In: Advances in Neural Information Processing Systems 33, pp. 14831–14843.

THANK YOU!