The Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024)

QKFormer: Hierarchical Spiking Transformer using Q-K Attention

Chenlin Zhou¹, Han Zhang^{1,2}, Zhaokun Zhou^{1,3}, Liutao Yu¹, Liwei Huang^{1,3}, Xiaopeng Fan^{1,2}, Li Yuan^{1,3},

Zhengyu Ma¹, Huihui Zhou¹, Yonghong Tian^{1,3}

¹Pengcheng Laboratory, ²Harbin Institute of Technology, ³Peking University

Background and Motivation

SNNs: the third generation of neural network models

- ✓ Biological plausibility,
- ✓ Spatiotemporal dynamics,
- ✓ Strong robustness,
- ✓ **High energy-efficient**, spike communication,
- ? Performance.

Background and Motivation

Substantial gap in performance!!!

There remains a substantial gap in performance between SNNs and ANNs on large-scale datasets.

Methods	Туре	Param.	ImageNet Acc
Spikformer	SNN	66.3M	74.8
Swin Transformer	ANN	87.7M	84.5
Our work	SNN	64.9M	85.6

Our Solutions:

- **Q-K Attention:** A new efficient spike-based attention module that allows the construction of larger models.
- Multi-scale spiking transformer respresentation.
- Novel spiking patch embedding.

Method: Q-K Attention

Method: QKFormer

- Multi-scale spiking representation
- Mixed Spiking Attention Integration

- Identity mapping cross downsampling blocks in spiking patch embedding
- SNN-optimized Downsampling

Reusits: ImageNet-1K

Methods	Туре	Architecture	Input Size	Param (M)	Power (mJ)	Time Step	Top-1 Acc (%)
RMP[21]	A2S	VGG-16	224^{2}	39.90	-	2048	73.09
QCFS[22]	A2S	ResNet-18	224^{2}	11.70	-	1024	74.32
MST[23]	A2S	Swin Transformer-T	224^{2}	28.50	-	512	78.51
	SNN	SEW-ResNet-34	224^{2}	21.79	4.89	4	67.04
SEW ResNet 28	SNN	SEW-ResNet-101	224^{2}	44.55	8.91	4	68.76
	SNN	SEW-ResNet-152	224^{2}	60.19	12.89	4	69.26
	SNN	Spikformer-8-384	224^{2}	16.81	7.73	4	70.24
Spikformer[11]	SNN	Spikformer-8-512	224^{2}	29.68	11.58	4	73.38
1	SNN	Spikformer-8-768	224^{2}	66.34	21.48	4	74.81
	SNN	Spikingformer-8-384	224^{2}	16.81	4.69	4	72.45
Spikingformer[12]	SNN	Spikingformer-8-512	224^{2}	29.68	7.46	4	74.79
	SNN	Spikingformer-8-768	224^{2}	66.34	13.68	4	75.85
S-Transformer [13]	SNN	S-Transformer-8-384	224^{2}	16.81	3.90	4	72.28
	SNN	S-Transformer-8-512	224^{2}	29.68	1.13	1	71.68
	SNN	S-Transformer-8-512	224^{2}	29.68	4.50	4	74.57
	SNN	S-Transformer-8-768*	288^{2}	66.34	6.09	4	77.07
ViT[4]	ANN	ViT-B/16	384^{2}	86.59	254.84	1	77.90
DeiT[<u>32]</u>	ANN	DeiT-B	224^{2}	86.59	80.50	1	81.80
	ANN	DeiT-B	384^{2}	86.59	254.84	1	83.10
Swin[8]	ANN	Swin Transformer-B	224^{2}	87.77	70.84	1	83.50
Swiiiloj	ANN	Swin Transformer-B	384^{2}	87.77	216.20	1	84.50
OKFormor	SNN	HST-10-384	224^{2}	16.47	15.13	4	78.80
	SNN	HST-10-512	224^{2}	29.08	21.99	4	82.04
	SNN	HST-10-768	224^{2}	64.96	8.52	1	81.69
ZIT OF INCI	SNN	HST-10-768	224^{2}	64.96	38.91	4	84.22
	SNN	HST-10-768*	288^{2}	64.96	64.27	4	85.25
	SNN	HST-10-768**	384^{2}	64.96	113.64	4	85.65

• Compared with SNNs:

QKFormer is the first directly trained SNN model, which has **exceeded 85% accuracy** on ImageNet-1K. The top-5 accuracy of QKFormer (HST-10-768 \Box) is 97.74%. Notably, with comparable size to Spikformer (66.34 M, 74.81%), QKFormer (64.96 M) achieves a ground-breaking top-1 accuracy of 85.65% on ImageNet-1k, substantially outperforming Spikformer by **10.84%**.

• Compared with ANNs:

QKFormer is a directly trained SNN model that has surpassed many transformer ANNs on ImageNet-1K. Under the same experiment conditions without pretraining or extra training data: QKFormer (64.96M, 85.65%, SNN) > Swin Transformer(88M, 84.5%, ANN) > DeiT-B (86M, 83.1%, ANN) > ViT (85.9M, 77.9%, ANN).

Reuslts: CIFAR10, CIFAR100, DVS128, CIFAR10-DVS

CIFAR10		.10	CIFAR100		DVS128		CIFAR10-DVS					
Method	Param	T	Acc	Param	T	Acc	Param	T	Acc	Param	T	Acc
Spikformer [11]	9.32	4	95.51	9.32	4	78.21	2.57	16	98.3	2.57	16	80.9
Spikingformer [12]	9.32	4	95.81	9.32	4	78.21	2.57	16	98.3	2.57	16	81.3
CML [14]	9.32	4	96.04	9.32	4	80.02	2.57	16	98.6	2.57	16	80.9
S-Transformer[13]	10.28	4	95.60	10.28	4	78.4	2.57	16	99.3	2.57	16	80.0
STSA[15]	_	—	_	_	—	_	1.99	16	98.7	1.99	16	79.93
ResNet-19 (ANN)	12.63	1	94.97	12.63	1	75.35	_	_	_	_	_	_
Trasnformer (ANN)	9.32	1	96.73	9.32	1	81.02	—	_	—	—	_	—
QKFormer	6.74	4	96.18	6.74	4	81.15	1.50	16	98.6	1.50	16	84.0

CIFAR100 (Acc) CIFAR10-DVS (Acc) Model QKFormer (QKTA + SSA, baseline) 81.15% 84.00% QKFormer (QKTA + SSA, w/o SPEDS) 80.08% 83.40% Spikformer (SSA, w/o scaling) 76.95% 79.30% Spikformer (SSA) 78.21% 80.90% Spikformer (SSA) + SPEDS 80.26% 82.20%

Model	CIFAR100 (Acc, Param)	CIFAR10-DVS (Acc, Param)
QKFormer (QKTA + SSA, baseline)	81.15%, 6.74M	84.00%, 1.50M
QKFormer (QKCA + SSA) QKFormer (QKTA + QKCA) QKFormer (SSA) QKFormer (QKCA) QKFormer (QKTA)	81.07%, 6.74M 81.04%, 6.44M 81.23%, 6.79M 81.00%, 6.44M 79.09%, 6.44M	84.30%, 1.50M 83.10%, 1.44M 84.10%, 1.52M 80.70%, 1.44M 80.70%, 1.44M

 QKFormer achieved SOTA performance on both CIFAR and Neuronoiphic datasets: fewer parameters, higher performance.

- SPEDS module is essential to QKFormer on both static and neuromorphic datasets. In addition, the addition of SPEDS to Spikformer leads to great gains.
- Mixed spiking attention solutions, such as QKFormer(QKTA + SSA),can achieve comparable performance to QKFormer(SSA) while requiring fewer parameters and much fewer memory resources.

Reusits: More Analyses

- Low firing rate.
- Low Computational Complexity.

• More stable Variance and Expectation.

Reuslts: Conclusion & Discussion

This work achieves a large improvement (+10.84%) above the state of the art in spiking neural networks. With its powerful performance, we aim for our investigations to instill optimism in the application of SNNs.

The Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024)

Thanks for your attention!

If you have any question or suggestion, please feel free to contact: *zhouchl@pcl.ac.cn* or *zhouchenlin19@mails.ucas.ac.cn*.

