

Probabilistic Conformal Distillation for Enhancing Missing Modality Robustness

Mengxi Chen, Fei Zhang, Zihua Zhao, Jiangchao Yao, Ya Zhang, Yanfeng Wang

2024.12

Background

● 上海交通大學

What is Missing Modality Inference?

Multimodal models trained on modality-complete samples but tested on modality-missing samples.

Page. 2

கோ

 \square

Motivation

When partial modalities are missing, the retaining information is merely correlated to that of modality-complete input in a probabilistic sense.

Page.

Objective: Transfer privileged information of modality-complete representation by **considering the indeterminacy** in the mapping from incompleteness to completeness.

 $z_i^{\star} = \arg\max_{z_i \in Z} p(z_i | \mathbf{x}_i),$

 x_i : modality-missing sample z_i^* : modality-complete representation

Method——Probabilistic Conformal Distillation

Modeling a distribution to learn the PDF by satisfying two key characteristics:

Probability Extremum

上海交通大學

- Points closer to the modality-complete representation have high probabilities. •
- Points farther away the modality-complete representation have low probabilities. •

 $q(z_p^{\star} \in Z_p | \mathbf{x}_i) \gg q(z_n^{\star} \in Z_n | \mathbf{x}_i) \approx 0.$

- Z_n : Positive set of modality-complete representations
- Z_n : Negative set of modality-complete representations

Geometric Conformality

The relation of peak points of modeled distributions ٠

$$s(g_p^{\star} \in G_p, g_i) \gg s(g_n^{\star} \in G_n, g_i),$$

conformal

The relation of modality-complete representations:

G_n: Positive set of modality-complete geometric vectors

G_n: Negative set of modality-complete geometric vectors

Objective Function:

$$\max \frac{\prod_{g_p^{\star} \in G_p} s(g_p^{\star}, g_i) \prod_{z_p^{\star} \in Z_p} q(z_p^{\star} | \mathbf{x}_i)}{\prod_{z_n^{\star} \in Z_n} q(z_n^{\star} | \mathbf{x}_i)} \cdot \max \underbrace{\left(\sum_{z_p^{\star} \in Z_p} \log q(z_p^{\star} | \mathbf{x}_i) - \sum_{z_n^{\star} \in Z_n} \log q(z_p^{\star} | \mathbf{x}_i)\right)}_{\mathbf{D} = \mathbf{1} + \mathbf{1} +$$

Probability Extremum

Geometric Consistency

Page .

Method——Probabilistic Conformal Distillation

Multimodal Probabilistic Modeling

$$q(z_i|\mathbf{x}_i) \sim \mathcal{N}\left(z_i; \mu_i, \sigma_i^2\right)$$
, where $\mu_i = f(x_i), \sigma_i = h(\mu_i)$.

Probability Extremum

会」」上海交通大学

Page. 5

īятu

Probability Extremum

■ Geometric Conformality

 SHANGHAI JIAO TONG UNIVERSITY

 Table 1: Performance under different modality-missing inference condition on two classification datasets and two segmentation datasets.

all is

	$CASIA-SURF (ACER \downarrow)$									
Method	{R}	{D}	{I}	{ R , D }	{ R , I }	{D,I}	$\{R,D,I\}$	Average		
Traditional [49]	23.03	17.10	49.53	10.40	41.02	11.26	1.40	22.11		
Separate Model [49]	10.01	4.45	11.65	3.41	6.32	3.54	1.23	5.80		
Augmentation [1]	11.75	5.87	16.62	4.61	6.68	4.95	2.21	7.52		
HeMIS [15]	14.36	4.70	16.21	3.23	6.27	3.68	1.97	7.18		
MMFormer [50]	11.15	4.67	13.99	1.93	4.77	3.10	1.94	5.93		
MMANET [46]	8.57	<u>2.27</u>	10.04	1.61	<u>3.01</u>	1.18	0.87	<u>3.94</u>		
MD [12]	10.84	6.65	19.43	12.64	7.84	3.99	0.96	7.30		
ETMC [14]	7.91	4.73	<u>7.54</u>	1.39	4.56	1.46	<u>0.76</u>	4.05		
RAML [6]	11.26	3.10	11.65	1.92	5.35	1.76	1.09	5.16		
PCD	7.23	2.20	5.66	0.99	2.86	0.89	0.74	2.93		
Δ	0.74%↓	0.07%↓	1.88%↓	0.40%↓	0.15%↓	0.29%↓	0.02%↓	1.01%↓		
				CeFA (A	ACER ↓)					
Method	{R}	{D}	{I}	$\{R,D\}$	{ R , I }	{D,I}	{R,D,I}	Average		
Traditional [49]	50.00	50.00	49.96	49.25	47.28	48.95	39.62	47.86		
Separate Model [49]	27.44	33.75	36.17	35.62	31.62	36.62	24.15	32.20		
Augmentation [1]	27.93	36.90	36.14	32.10	28.47	35.12	31.87	32.65		
HeMIS [15]	34.14	37.97	36.94	36.02	33.94	31.92	40.66	35.94		
MMFormer [50]	28.51	33.58	39.56	29.47	27.66	32.17	30.72	31.52		
MMANET [46]	27.15	32.50	35.62	22.87	23.27	30.45	23.68	<u>27.94</u>		
MD [12]	27.13	35.81	37.99	26.25	31.29	34.69	30.49	31.95		
ETMC [14]	<u>24.74</u>	34.28	37.62	<u>22.52</u>	24.25	30.63	21.59	27.95		
RAML [6]	28.54	33.88	40.01	23.82	28.81	<u>28.85</u>	22.11	29.43		
PCD	21.38	28.01	34.79	17.19	20.92	21.68	14.39	22.63		
Δ	3.36%↓	4.49%↓	0.83%↓	5.33%↓	2.35%↓	5.75%↓	7.20%↓	5.31%↓		
		NYUv2 (mIOU ↑)		Cityscapes (mIOU ↑)					
Method	{R}	{D}	$\{R,D\}$	Average	{R}	{D}	{R,D}	Average		
Traditional [36]	11.15	4.18	48.78	21.41	3.17	4.87	78.73	28.89		
Separate Model [36]	44.22	40.55	48.89	44.55	77.60	59.11	78.62	71.77		
Augmentation [1]	41.34	39.76	47.23	42.77	76.89	57.42	78.13	70.81		
MMFormer [50]	43.22	41.12	48.45	44.26	76.62	58.53	78.01	71.05		
MMANET [46]	44.93	42.75	49.62	45.58	77.61	60.12	78.89	72.20		
PCD	45.68	44.34	49.44	46.49	78.26	61.30	79.53	73.03		
Δ	0.75%↑	1.59%↑	0.18%↓	0.91%↑	0.65%↑	$1.18\%^{\uparrow}$	0.64%	0.83%↑		

Table 2: Ablation Study												
			CASIA-SURF									
\mathcal{L}_{c}	\mathcal{L}_u	\mathcal{L}_{g}	{R}	$\{D\}$	$\{I\}$	$\{R,D\}$	${R,I}$	${D,I}$	$\{R,D,I\}$	Average		
\checkmark	×	×	12.31	2.89	19.24	1.31	8.16	2.19	1.35	6.78		
\checkmark	×	\checkmark	13.55	2.01	18.02	0.86	5.81	2.53	0.85	6.24		
\checkmark	\checkmark	×	7.59	4.10	7.97	1.83	3.86	2.04	0.97	4.05		
\checkmark	\checkmark	\checkmark	7.23	<u>2.20</u>	5.66	<u>0.99</u>	2.86	0.89	0.74	2.93		
						С	eFA					
\mathcal{L}_{c}	\mathcal{L}_{u}	\mathcal{L}_{g}	{R}	$\{D\}$	$\{I\}$	$\{R,D\}$	$\{R,I\}$	$\{D,I\}$	$\{R,D,I\}$	Average		
\checkmark	×	×	26.95	38.06	37.06	24.18	24.75	32.82	25.38	29.89		
\checkmark	\checkmark	×	21.14	<u>33.76</u>	37.22	21.28	23.61	27.56	21.19	26.53		
\checkmark	×	\checkmark	20.62	34.43	<u>35.23</u>	18.18	21.86	32.63	21.72	26.38		
\checkmark	\checkmark	\checkmark	21.38	28.01	34.79	17.19	20.92	21.68	14.39	22.63		
				NYUv2				Cityscapes				
\mathcal{L}_c	\mathcal{L}_u	\mathcal{L}_{g}	{R}	$\{T\}$	$\{R,T\}$	Average	$\{R\}$	{T}	$\{R,T\}$	Average		
\checkmark	×	×	44.24	41.17	47.89	44.43	77.54	59.64	78.46	71.89		
\checkmark	×	\checkmark	45.96	42.95	48.54	45.82	78.11	60.62	79.07	72.60		
\checkmark	\checkmark	×	44.48	42.02	<u>48.86</u>	45.12	77.52	<u>59.94</u>	78.91	72.17		
\checkmark	\checkmark	\checkmark	45.68	44.34	49.44	46.49	78.26	61.30	79.53	73.03		

Page. 6

Experiments

Page .

Figure 3: The prediction distributions of both the teacher and the distilled student of PCD under all multimodal combinations on CeFA. The X-axis represents the normalized logit output and the Y-axis is the number of samples after taking the square root.

 Table 3: Performance under different modality-missing inference condition with modality-missing training data.

		CASIA-SURF (ACER \downarrow)								
Missing	Method	$\{R\}$	{D}	{I}	$\{R,D\}$	$\{R,I\}$	$\{D,I\}$	$\{R,D,I\}$	Average	
	MMANET [46]	13.50	3.38	6.57	6.57	3.72	1.83	1.31	4.67	
30%	ETMC [14]	7.63	3.62	10.18	1.12	5.21	1.43	<u>0.96</u>	4.31	
2070	PCD	8.28	2.13	6.66	1.24	2.66	2.66	0.60	3.18	
	Δ	$0.65\%\uparrow$	1.25%↓	0.09%↑	$0.12\%\uparrow$	1.06%↓	$1.23\%^{+}$	0.36%↓	1.13%↓	
	MMANET [46]	14.96	5.22	9.03	3.24	5.14	2.31	2.10	6.00	
40%	ETMC [14]	<u>9.38</u>	7.42	7.44	1.41	<u>3.98</u>	3.16	0.58	4.77	
	PCD	7.14	1.77	10.88	1.08	3.70	1.10	0.88	3.79	
	Δ	2.24%↓	3.45%↓	3.44%†	0.33%↓	0.28%↓	1.21%↓	0.30%↑	0.98%↓	
	CeFA (ACER)									
					CeFA (A	ACER ↓)				
Missing	Method	{ R }	{D}	{I}	CeFA (A {R,D}	$ACER \downarrow) \\ {R,I}$	{D,I}	{R,D,I}	Average	
Missing	Method MMANET [46]	{R} 28.39	{D} 39.61	{I} 34.12	CeFA (4 {R,D} 34.19	$\begin{array}{c} \text{ACER} \downarrow) \\ \{\text{R},\text{I}\} \\ \hline 23.39 \end{array}$	{D,I} 34.12	{R,D,I} 27.11	Average 31.56	
Missing	Method MMANET [46] ETMC [14]	{R} 28.39 25.96	{D} 39.61 <u>34.69</u>	{I} 34.12 38.60	CeFA (A {R,D} 34.19 24.15	$\begin{array}{c} \text{ACER } \downarrow) \\ \{\text{R,I}\} \\ \hline \\ \underline{23.39} \\ 24.58 \end{array}$	{D,I} 34.12 <u>31.83</u>	{R,D,I} 27.11 <u>24.03</u>	Average 31.56 <u>29.12</u>	
Missing 30%	Method MMANET [46] ETMC [14] PCD	{R} 28.39 25.96 23.42	{D} 39.61 <u>34.69</u> 30.23	{I} 34.12 38.60 <u>34.60</u>	CeFA (<i>A</i> {R,D} 34.19 <u>24.15</u> 18.34	ACER \downarrow) {R,I} $\frac{23.39}{24.58}$ 21.98	{D,I} 34.12 <u>31.83</u> 24.50	{R,D,I} 27.11 24.03 15.07	Average 31.56 29.12 23.73	
Missing 30%	Method MMANET [46] ETMC [14] PCD Δ	{R} 28.39 25.96 23.42 2.54%↓	{D} 39.61 <u>34.69</u> 30.23 4.46%↓	<pre>{I} 34.12 38.60 34.60 0.48%↑</pre>	CeFA (4 {R,D} 34.19 24.15 18.34 5.81%↓	ACER \downarrow) {R,I} $\frac{23.39}{24.58}$ 21.98 1.41% \downarrow	{D,I} 34.12 <u>31.83</u> 24.50 7.33%↓	{R,D,I} 27.11 24.03 15.07 8.96%↓	Average 31.56 29.12 23.73 5.39%↓	
Missing 30%	Method MMANET [46] ETMC [14] PCD Δ MMANET [46]	{R} 28.39 25.96 23.42 2.54%↓ 29.94	{D} 39.61 34.69 30.23 4.46%↓ 43.40	 {I} 34.12 38.60 34.60 0.48%↑ 37.29 	CeFA (<i>A</i> {R,D} 34.19 24.15 18.34 5.81%↓ 31.60	ACER \downarrow) {R,I} 23.39 24.58 21.98 1.41% \downarrow 28.62	{D,I} 34.12 <u>31.83</u> 24.50 7.33%↓ 44.97	{R,D,I} 27.11 24.03 15.07 8.96%↓ 31.80	Average 31.56 29.12 23.73 5.39%↓ 35.38	
Missing 30%	Method MMANET [46] ETMC [14] PCD Δ MMANET [46] ETMC [14]	{R} 28.39 25.96 23.42 2.54%↓ 29.94 24.38	{D} 39.61 34.69 30.23 4.46%↓ 43.40 <u>37.82</u>	{1} 34.12 38.60 34.60 0.48%↑ 37.29 38.33	CeFA (<i>i</i> {R,D} 34.19 24.15 18.34 5.81%↓ 31.60 25.04	ACER \downarrow) {R,I} $\frac{23.39}{24.58}$ $\frac{21.98}{1.41\%}$ 28.62 $\frac{24.39}{24.39}$	{D,I} 34.12 31.83 24.50 7.33%↓ 44.97 <u>36.96</u>	{R,D,I} 27.11 24.03 15.07 8.96%↓ 31.80 24.03	Average 31.56 29.12 23.73 5.39%↓ 35.38 <u>30.13</u>	
Missing 30% 40%	Method MMANET [46] ETMC [14] PCD Δ MMANET [46] ETMC [14] PCD	$\begin{array}{c} \{ R \} \\ 28.39 \\ 25.96 \\ \hline \\ 23.42 \\ 2.54\% \downarrow \\ 29.94 \\ \hline \\ 24.38 \\ \hline \\ 24.91 \end{array}$	{D} 39.61 34.69 30.23 4.46%↓ 43.40 37.82 31.23	{I} 34.12 38.60 34.60 0.48%↑ 37.29 38.33 34.40	CeFA (<i>A</i> {R,D} 34.19 <u>24.15</u> 18.34 5.81%↓ 31.60 <u>25.04</u> 21.09	ACER \downarrow) {R,I} 23.39 24.58 24.58 21.98 1.41% \downarrow 28.62 24.39 23.98	{D,I} 34.12 <u>31.83</u> 24.50 7.33%↓ 44.97 <u>36.96</u> 23.31	<pre>{R,D,I} 27.11 24.03 15.07 8.96%↓ 31.80 24.03 16.30</pre>	Average 31.56 29.12 23.73 5.39%↓ 35.38 30.13 25.03	

Conclusion

上海交通大學

We propose a Probabilistic Conformal Distillation (PCD) method to handle the missing modality problem, which transfers privileged information of modality-complete representation by considering the indeterminacy in the mapping from incompleteness to completeness.

Page .

- We parameterize different modality-missing representations as distinct distributions to fit their unknown PDFs in the modality-complete space. This is specially realized by considering the probabilities of extreme points and ensuring the geometric consistency between peak points of different PDFs and modeled distributions.
- We conduct comprehensive experiments to demonstrate the effectiveness of PCD across a range of modalitymissing scenarios. Extensive comparison on multimodal classification and segmentation tasks consistently validate the superior performance of our method compared to the state-of-the-art approaches.