Simple and Fast Distillation of Diffusion Models

Zhenyu Zhou^{1,2}, Defang Chen³, Can Wang^{1,2}, Chun Chen^{1,2}, Siwei Lyu³

¹Zhejiang University, State Key Laboratory of blockchain and Data Security
 ²Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security
 ³University at Buffalo, State University of New York

Reporter : Zhenyu Zhou

• The Simplest Perspective on the Sampling of Diffusion Models

• The Simplest Perspective on the Sampling of Diffusion Models

Forward [1]:
$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}_t$$
(1)

• The Simplest Perspective on the Sampling of Diffusion Models

Forward [1]:	$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}_t$	(1)
Backward (PFODE) [1]:	$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x})]dt$	(2)

• The Simplest Perspective on the Sampling of Diffusion Models

Forward [1]:	$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}_t$	(1)
Backward (PFODE) [1]:	$d\mathbf{x} = [\mathbf{f}(\mathbf{x},t) - \frac{1}{2}g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x})]dt$	(2)
EDM formulation [2]:	$\mathrm{d}\mathbf{x} = -t\nabla_{\mathbf{x}}\log p_t(\mathbf{x})\mathrm{d}t$	(3)

• The Simplest Perspective on the Sampling of Diffusion Models

Forward [1]:
$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}_{t}$$
(1)
Backward (PFODE) [1]:
$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^{2}(t)\nabla_{\mathbf{x}}\log p_{t}(\mathbf{x})]dt$$
(2)
EDM formulation [2]:
$$d\mathbf{x} = -t\nabla_{\mathbf{x}}\log p_{t}(\mathbf{x})dt$$
(3)
Diffusion Models:
$$\nabla_{\mathbf{x}}\log p_{t}(\mathbf{x}) \approx \mathbf{s}_{\theta}(\mathbf{x}, t) = -\frac{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}, t)}{t} = \frac{\mathbf{D}_{\theta}(\mathbf{x}, t) - \mathbf{x}}{t^{2}}$$
(4)

• The Simplest Perspective on the Sampling of Diffusion Models

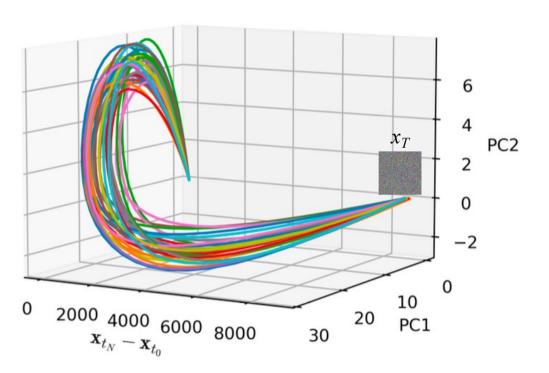
Forward [1]:	$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}_t$	(1)
Backward (PFODE) [1]:	$d\mathbf{x} = [\mathbf{f}(\mathbf{x},t) - \frac{1}{2}g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x})]dt$	(2)
EDM formulation [2]:	$\mathrm{d}\mathbf{x} = -t\nabla_{\mathbf{x}}\log p_t(\mathbf{x})\mathrm{d}t$	(3)
Diffusion Models:	$ abla_{\mathbf{x}} \log p_t(\mathbf{x}) \approx \mathbf{s}_{\theta}(\mathbf{x}, t) = -\frac{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}, t)}{t} = \frac{\mathbf{D}_{\theta}(\mathbf{x}, t) - \mathbf{x}}{t^2}$	(4)
Simplified formulation:	$\mathrm{d}\mathbf{x} = \boldsymbol{\epsilon}_{\theta}(\mathbf{x}, t) \mathrm{d}t$	(5)
Sampling trajectory:	$\{\mathbf{x}_n\}_{n=0}^N$	(6)

^[1] Song Y, Sohl-Dickstein J, Kingma D P, et al. Score-based generative modeling through stochastic differential equations[J]. arXiv preprint arXiv:2011.13456, 2020.

^[2] Karras T, Aittala M, Aila T, et al. Elucidating the design space of diffusion-based generative models[J]. Advances in Neural Information Processing Systems, 2022, 35: 26565-26577.

• The Trajectory Regularity [3]

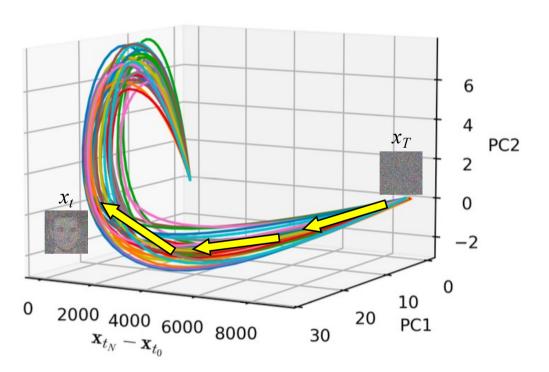
 $\mathrm{d}\mathbf{x} = \boldsymbol{\epsilon}_{\theta}(\mathbf{x}, t) \mathrm{d}t$



[3] Chen D, Zhou Z, Wang C, et al. On the Trajectory Regularity of ODE-based Diffusion Sampling[J]. arXiv preprint arXiv:2405.11326, 2024.

• The Trajectory Regularity [3]

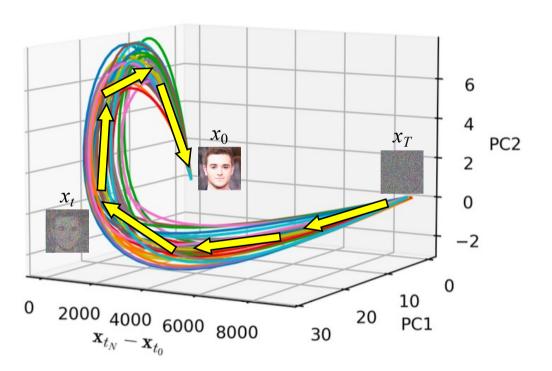
 $\mathrm{d}\mathbf{x} = \boldsymbol{\epsilon}_{\theta}(\mathbf{x}, t) \mathrm{d}t$



[3] Chen D, Zhou Z, Wang C, et al. On the Trajectory Regularity of ODE-based Diffusion Sampling[J]. arXiv preprint arXiv:2405.11326, 2024.

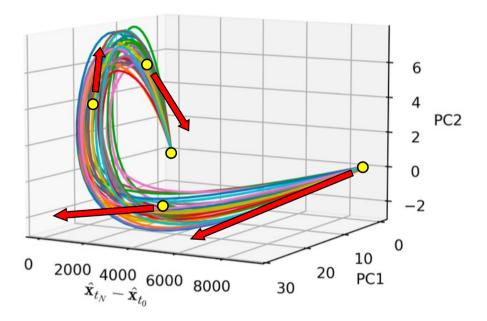
• The Trajectory Regularity [3]

 $\mathrm{d}\mathbf{x} = \boldsymbol{\epsilon}_{\theta}(\mathbf{x}, t) \mathrm{d}t$



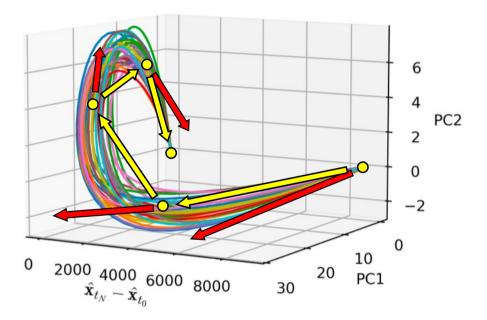
[3] Chen D, Zhou Z, Wang C, et al. On the Trajectory Regularity of ODE-based Diffusion Sampling[J]. arXiv preprint arXiv:2405.11326, 2024.

Progressive Distillation [4]



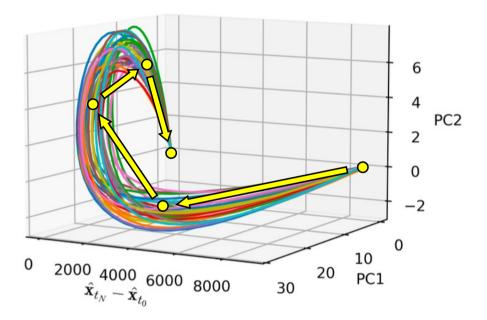
[4] Salimans T, Ho J. Progressive distillation for fast sampling of diffusion models[J]. arXiv preprint arXiv:2202.00512, 2022.

Progressive Distillation [4]



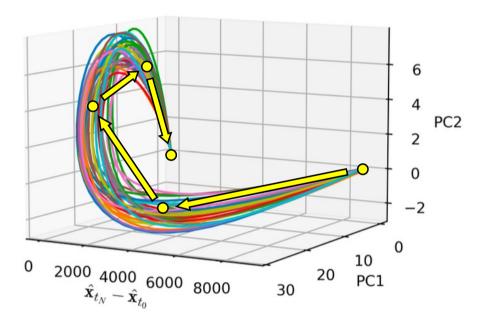
[4] Salimans T, Ho J. Progressive distillation for fast sampling of diffusion models[J]. arXiv preprint arXiv:2202.00512, 2022.

Progressive Distillation [4]



[4] Salimans T, Ho J. Progressive distillation for fast sampling of diffusion models[J]. arXiv preprint arXiv:2202.00512, 2022.

Progressive Distillation [4]

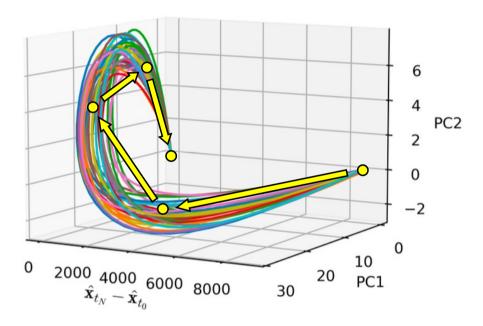


• Problem: Time-consuming

- The mismatch between fine-tuning and sampling steps:
 Wasted training efforts
- The complex optimization objectives:
 LPIPS loss, adversarial training, regularization...

[4] Salimans T, Ho J. Progressive distillation for fast sampling of diffusion models[J]. arXiv preprint arXiv:2202.00512, 2022.

Progressive Distillation [4]



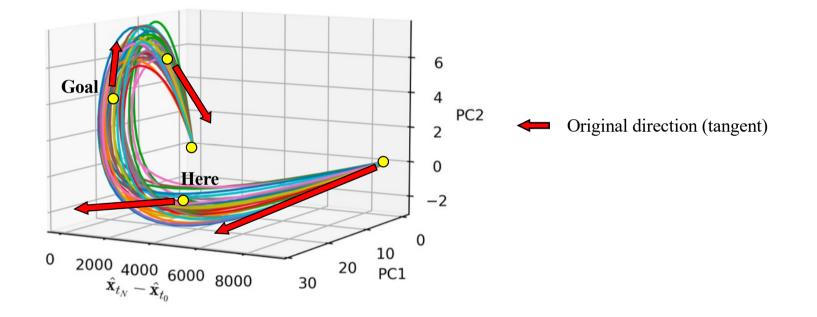
• Problem: Time-consuming

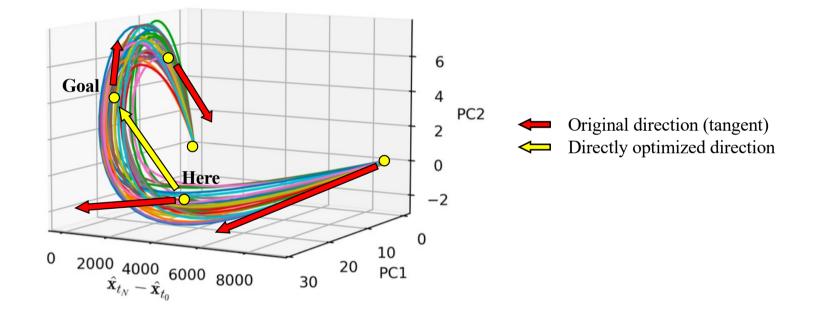
- The mismatch between fine-tuning and sampling steps: Wasted training efforts
- The complex optimization objectives:
 LPIPS loss, adversarial training, regularization...

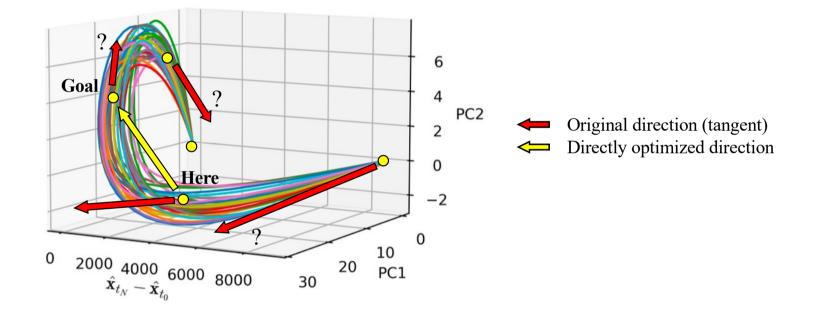
• Our Goal

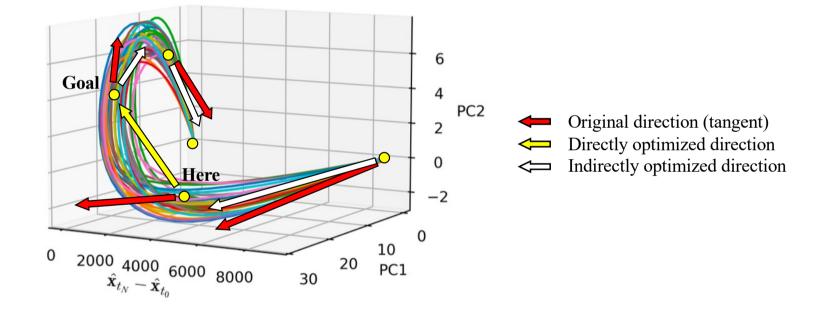
- Simple distillation: simplified pipeline
- Fast distillation: accelerated training

[4] Salimans T, Ho J. Progressive distillation for fast sampling of diffusion models[J]. arXiv preprint arXiv:2202.00512, 2022.

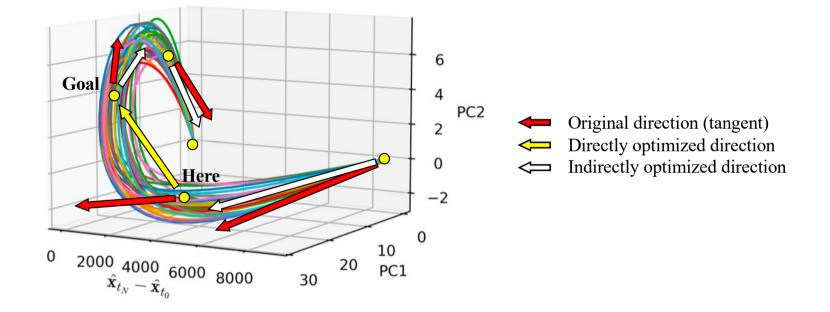








• The Mutual Enhancement of Fine-tuning at Different Timestamps



No need to fine-tune on a fine-grained timestamps

Method Overview

• Ingredient 1: From Local Optimization to Global Optimization

Algorithm 1 Trajectory Distillation	Algorithm 2 SFD (ours)
repeat	repeat
Sample \mathbf{x}_0 from the dataset	Sample $\mathbf{x}_N = \tilde{\mathbf{x}}_N \sim \mathcal{N}(0; t_N^2 \mathbf{I})$
Sample $n \sim \mathcal{U}(0, N-1)$	for $n = N - 1$ to 0 do
Sample $\mathbf{x}_{n+1} \sim \mathcal{N}(\mathbf{x}_0; t_{n+1}^2 \mathbf{I})$	$\mathbf{x}_{n}^{\psi} \leftarrow \operatorname{Euler}(\mathbf{x}_{n+1}, t_{n+1}, t_{n}, 1; \psi)$
$\mathbf{x}_n^{\psi} \leftarrow \operatorname{Euler}(\mathbf{x}_{n+1}, t_{n+1}, t_n, 1; \psi)$	$\tilde{\mathbf{x}}_n \leftarrow \text{Solver}(\tilde{\mathbf{x}}_{n+1}, t_{n+1}, t_n, K; \theta)$
$\tilde{\mathbf{x}}_{n} \leftarrow \text{Solver}(\mathbf{x}_{n+1}, t_{n+1}, t_{n}, K; \theta)$	$\psi \leftarrow \psi - \eta abla_\psi d(\mathbf{x}_n^\psi, ilde{\mathbf{x}}_n)$
$\mathcal{L}(\psi) \leftarrow d(\mathbf{x}_n^{\psi}, \tilde{\mathbf{x}}_n)$	$\mathbf{x}_n \leftarrow \operatorname{detach}(\mathbf{x}_n^\psi)$
$\psi \leftarrow \psi - \eta abla_{\psi} \mathcal{L}(\psi)$	end for
until convergence	until convergence

- > Enable the teacher to sample more efficiently by multi-step solvers
- Enable the student to fix accumulated errors

• Ingredient 2: Efficient Solver for Teacher Sampling

 \rightarrow DPM++(3M) > DPM(2S) > Heun > DDIM (Euler)

Method Overview

• Ingredient 1: From Local Optimization to Global Optimization

Algorithm 1 Trajectory Distillation
repeat
Sample x_0 from the dataset
Sample $n \sim \mathcal{U}(0, N-1)$
Sample $\mathbf{x}_{n+1} \sim \mathcal{N}(\mathbf{x}_0; t_{n+1}^2 \mathbf{I})$
$\mathbf{x}_{n}^{\psi} \leftarrow \operatorname{Euler}(\mathbf{x}_{n+1}, t_{n+1}, t_{n}, 1; \psi)$
$\tilde{\mathbf{x}}_n \leftarrow \text{Solver}(\mathbf{x}_{n+1}, t_{n+1}, t_n, K; \theta)$
$\mathcal{L}(\psi) \leftarrow d(\mathbf{x}_n^\psi, \widetilde{\mathbf{x}}_n)$
$\psi \leftarrow \psi - \eta abla_\psi \mathcal{L}(\psi)$
until convergence

```
Algorithm 2 SFD (ours)repeatSample \mathbf{x}_N = \tilde{\mathbf{x}}_N \sim \mathcal{N}(\mathbf{0}; t_N^2 \mathbf{I})for n = N - 1 to 0 do\mathbf{x}_n^{\psi} \leftarrow \text{Euler}(\mathbf{x}_{n+1}, t_{n+1}, t_n, 1; \psi)\tilde{\mathbf{x}}_n \leftarrow \text{Solver}(\tilde{\mathbf{x}}_{n+1}, t_{n+1}, t_n, K; \theta)\psi \leftarrow \psi - \eta \nabla_{\psi} d(\mathbf{x}_n^{\psi}, \tilde{\mathbf{x}}_n)\mathbf{x}_n \leftarrow \text{detach}(\mathbf{x}_n^{\psi})end foruntil convergence
```

- Enable the teacher to sample more efficiently by multi-step solvers
- Enable the student to fix accumulated errors
- Ingredient 2: Efficient Solver for Teacher Sampling
 - \blacktriangleright DPM++(3M) > DPM(2S) > Heun > DDIM (Euler)
- Ingredient 3: Minimum and Maximum Timestamps
 - ➤ Use analytical first step (AFS) to save one sampling step
- Ingredient 4: Loss Metric: L1 > Pseudo-Huber > LPIPS > L2

Method	Teacher	t_{\min}	AFS	Loss	FID
Vanilla	Heun	0.002	N/A	L2	46.84
Vanilla	DPM(2S)	0.002	N/A	L2	16.69
SFD	Heun	0.002	False	L2	20.88
SFD	DPM(2S)	0.002	False	L2	12.50
SFD	DPM++(3M)	0.002	False	L2	11.65
SFD	DPM++(3M)	0.006	False	L2	10.93
SFD	DPM++(3M)	0.002	True	L2	7.17
SFD	DPM++(3M)	0.006	True	L2	5.67
SFD	DPM++(3M)	0.006	True	LPIPS	5.10
SFD	DPM++(3M)	0.006	True	PH	4.90
SFD	DPM++(3M)	0.006	True	L1	4.57

Method Overview

• Ingredient 1: From Local Optimization to Global Optimization

```
Algorithm 2 SFD (ours)
```

until convergence

repeat Sample $\mathbf{x}_N = \tilde{\mathbf{x}}_N \sim \mathcal{N}(\mathbf{0}; t_N^2 \mathbf{I})$ for n = N - 1 to 0 do $\mathbf{x}_n^{\psi} \leftarrow \text{Euler}(\mathbf{x}_{n+1}, t_{n+1}, t_n, 1; \psi)$ $\tilde{\mathbf{x}}_n \leftarrow \text{Solver}(\tilde{\mathbf{x}}_{n+1}, t_{n+1}, t_n, K; \theta)$ $\psi \leftarrow \psi - \eta \nabla_{\psi} d(\mathbf{x}_n^{\psi}, \tilde{\mathbf{x}}_n)$ $\mathbf{x}_n \leftarrow \text{detach}(\mathbf{x}_n^{\psi})$ end for

- > Enable the teacher to sample more efficiently by multi-step solvers
- Enable the student to fix accumulated errors
- Ingredient 2: Efficient Solver for Teacher Sampling
 - \blacktriangleright DPM++(3M) > DPM(2S) > Heun > DDIM (Euler)
- Ingredient 3: Minimum and Maximum Timestamps
 - ➢ Use analytical first step (AFS) to save one sampling step
- Ingredient 4: Loss Metric: L1 > Pseudo-Huber > LPIPS > L2

Method	Teacher	t_{\min}	AFS	Loss	FID
Vanilla	Heun	0.002	N/A	L2	46.84
Vanilla	DPM(2S)	0.002	N/A	L2	16.69
SFD	Heun	0.002	False	L2	20.88
SFD	DPM(2S)	0.002	False	L2	12.50
SFD	DPM++(3M)	0.002	False	L2	11.65
SFD	DPM++(3M)	0.006	False	L2	10.93
SFD	DPM++(3M)	0.002	True	L2	7.17
SFD	DPM++(3M)	0.006	True	L2	5.67
SFD	DPM++(3M)	0.006	True	LPIPS	5.10
SFD	DPM++(3M)	0.006	True	PH	4.90
SFD	DPM++(3M)	0.006	True	L1	4.57

Consistent settings can be applied to various datasets

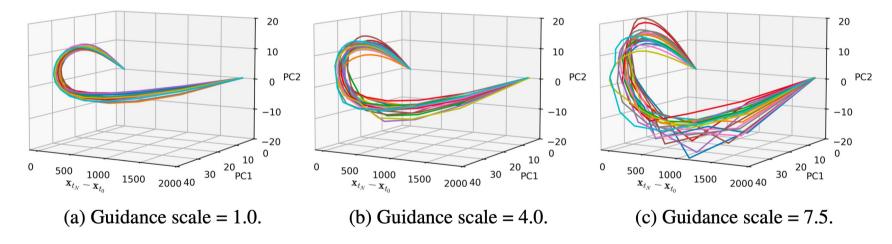
- Enable NFE-variable Sampling using One Model
 - Add step-condition as a new input

Extensions

- Enable NFE-variable Sampling using One Model
 - > Add step-condition as a new input

• Distillation under Classifier-free Guidance

- > Classifier-free guidance: $\tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{x},t,c) = \omega \boldsymbol{\epsilon}_{\theta}(\mathbf{x},t,c) + (1-\omega)\boldsymbol{\epsilon}_{\theta}(\mathbf{x},t,c=\varnothing)$
- > Distill with guidance scale of 1 and sampling with any guidance scale

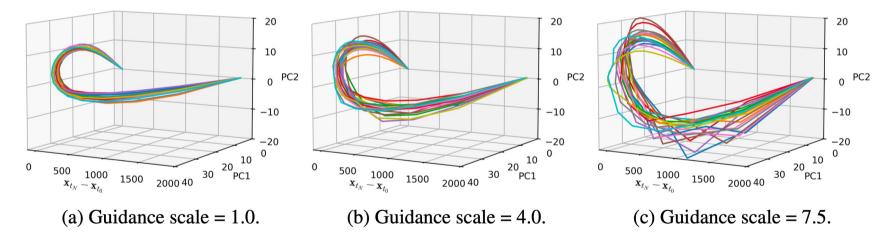


Extensions

- Enable NFE-variable Sampling using One Model
 - Add step-condition as a new input

• Distillation under Classifier-free Guidance

- > Classifier-free guidance: $\tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{x},t,c) = \omega \boldsymbol{\epsilon}_{\theta}(\mathbf{x},t,c) + (1-\omega)\boldsymbol{\epsilon}_{\theta}(\mathbf{x},t,c=\emptyset)$
- > Distill with guidance scale of 1 and sampling with any guidance scale



• Second-stage Distillation for One-NFE Sampling

Experiments: Main Results

Table 2: Results	Table 3: Resul			
Method	NFE	FID	Training time (A100 hours)	Method
Solver-based Methods				Solver-based Methods
DDIM [44]	10	15.69	0	DDIM [44]
	50	2.91	0	
DPM++(3M) [28]	5	24.97	0	DPM++(3M) [28]
	10	3.00	0	
AMED-Plugin [58]	5	6.61	~ 0.08	AMED-Plugin [58]
_	10	2.48	~ 0.11	-
GITS [4]	5	8.38	< 0.01	GITS [4]
	10	2.49	~ 0.01	
Diffusion Distillation				Diffusion Distillation
PD [41]	1	9.12	~ 195	PD [41]
	2	4.51	~ 171	
Guided PD [32]	1	8.34	~ 146	Guided PD [32]
	2	4.48	~ 128	
	4	3.18	~ 119	
CD [46]	1	3.55	~ 1156	CD [46]
	2	2.93	~ 1156	
CTM [15]	1	1.98	~ 83	CTM [15]
CTM [15] w/o GAN loss	1	> 5	~ 60	
SFD (ours) (second-stage)	1	5.83	4.88	SFD (ours) (second-stag
SFD (ours)	2	4.53	0.64	SFD
	3	3.58	0.92	
	4	3.24	1.17	
	5	3.06	1.42	
SFD-v (ours)	2	4.28		SFD-v (ours)
	3	3.50	1.26	
	4	3.18	4.26	
	5	2.95		

Table 3: Results on ImageNet 64×64 .

Method	NFE	FID	Training time (A100 hours)
Solver-based Methods			
DDIM [44]	10	16.72	0
	50	4.09	0
DPM++(3M) [28]	5	25.49	0
	10	5.67	0
AMED-Plugin [58]	5	13.83	~ 0.18
	10	5.01	~ 0.32
GITS [4]	5	10.79	< 0.02
	10	4.48	~ 0.02
Diffusion Distillation			
PD [41]	1	15.39	< 5533
FD [41]	2	8.95	< 4611
Guided PD [32]	$\frac{2}{1}$	22.74	< 5533
Guided FD [32]	2	22.74 9.75	< 4611
	4	9.75 4.14	< 4150
CD [46]	1	6.20	< 7867
	2	0.20 4.70	< 7867
CTM [15]	1	2.06	< 902
	2	2.00 1.90	< 902
	Z	1.90	< 902
SFD (ours) (second-stage)	1	12.89	6.86
SFD	2	10.25	3.34
	3	6.35	4.63
	4	4.99	5.98
	5	4.33	7.11
SFD-v (ours)	2	9.47	
	3	5.78	
	4	4.72	23.62
	5	4.21	
	5	7.41	

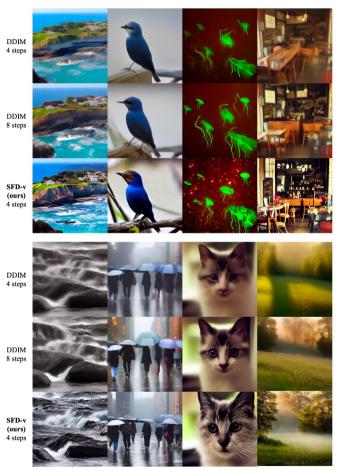
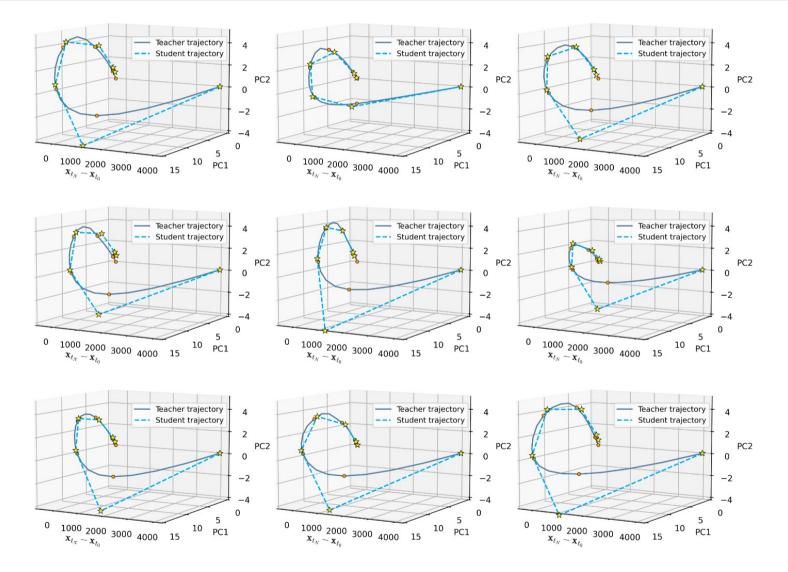


Figure 12: Qualitative results generated by Stable Diffusion v1.5 [41].

Experiments: Visualization



Thanks for watching !