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Progressive Distillation [4]
• Problem: Time-consuming

Ø The mismatch between fine-tuning and sampling steps:
Wasted training efforts

Ø The complex optimization objectives:
LPIPS loss, adversarial training, regularization…

• Our Goal

Ø Simple distillation: simplified pipeline

Ø Fast distillation: accelerated training
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• The Mutual Enhancement of Fine-tuning at Different Timestamps

Original direction (tangent)
Directly optimized direction
Indirectly optimized direction

No need to fine-tune on a fine-grained timestamps

Goal

Here
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• Ingredient 3: Minimum and Maximum Timestamps
Ø Use analytical first step (AFS) to save one sampling step

• Ingredient 4: Loss Metric: L1 > Pseudo-Huber > LPIPS > L2

Consistent settings can be applied to various datasets
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Extensions

• Enable NFE-variable Sampling using One Model
Ø Add step-condition as a new input

• Distillation under Classifier-free Guidance

Ø Classifier-free guidance:
Ø Distill with guidance scale of 1 and sampling with any guidance scale

• Second-stage Distillation for One-NFE Sampling



Experiments: Main Results



Experiments: Visualization



Thanks for watching !


