

Semi-supervised Multi-label Learning with Balanced Binary Angular Margin Loss

Ximing Li^{1,2}, Silong Liang^{1,2}, Changchun Li^{1,2,*}, Pengfei Wang^{3,4} and Fangming Gu^{1,2}

¹College of Computer Science and Technology, Jilin University, China
²Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, China
³Computer Network Information Center, Chinese Academy of Sciences, China
⁴University of Chinese Academy of Sciences, China

Presenter: Silong Liang

Semi-supervised **Multi-label Learning**

Semi-Supervised Multi-Label Learning

In multi-label learning, each object is also represented by an instance and associated with a set of labels instead of a single label. The task of multi-label learning is to learn a function that can predict the correct set of labels for unseen instances. In supervised learning, the class labels of the samples are known, and the goal of learning is to find the relationship between the features of the samples and their classes.

However, in many real-world scenarios, the cost of manually labeling data is high, which results in a scarcity of labeled samples. In contrast, unlabeled data can be easily collected, often in quantities that are hundreds of times greater than that of labeled data.

Therefore, semi-supervised learning seeks to train a classifier using a large number of unlabeled samples and a small number of labeled ones, addressing the challenge of insufficient labeled data.

Variance Bias Problem

In our preliminary experiments, we found self-training paradigms suffer from the variance bias problem by using the labeled and pseudo-labeled samples in the context of SSMLL, since it is difficult to guarantee accurate enough pseudo-labels.

The variance difference between feature distributions (VDFD) of positive and negative samples computed in semi-supervised and supervised manners in VOC2012.

How Variance Bias Affects the Performance?

We set the ratio of positive and negative sample variances to **M**. Given a SSBC dataset with pseudo-labels $S = \{(x_i, y_i)\} = \{(x_i, y_i^*)\} \cup \{(x_i, \hat{y_i})\}$, the optimal linear classifier f_{ssl} minimizing the average standard classification error is given by:

$$f_{ssl} = \operatorname{argmin}_{f} \mathbb{E}_{(\mathbf{x}, y) \sim S} [1(f(\mathbf{x}) \neq y)]$$

When M > 1, it has the intra-class standard classification errors for the two classes :

$$\mathcal{R}(f_{ssl},+1) = \Phi\left(A - M\sqrt{A^2 + q(M,\alpha,\epsilon_-,\epsilon_+)}\right),$$

$$\mathcal{R}(f_{ssl},-1) = \Phi\left(-M \cdot A + \sqrt{A^2 + q(M,\alpha,\epsilon_-,\epsilon_+)}\right)$$

and when M < 1, they are given by:

$$\mathcal{R}(f_{ssl},+1) = \Phi\left(A + M\sqrt{A^2 + q(M,\alpha,\epsilon_-,\epsilon_+)}\right),$$

$$\mathcal{R}(f_{ssl},-1) = \Phi\left(-M \cdot A - \sqrt{A^2 + q(M,\alpha,\epsilon_-,\epsilon_+)}\right)$$

We employ variance of class-wise accuracy **(VCA)** to quantitatively measure the model fairness. the variance of class-wise accuracy VCA(f_{ssl}) is increasing when $M \rightarrow \infty$ for M > 1 and $M \rightarrow 0$ for M < 1. Suppose $\log(\frac{\alpha(2-\epsilon_{-}-2\epsilon_{+})}{(1-\alpha)(2-2\epsilon_{-}-\epsilon_{+})}) = 0$, then when M = 1, $R(f_{ssl}, +1) = R(f_{ssl}, -1)$ and VCA(f_{ssl}) = 0.

$S^2 M L^2 - BBAM$ Method

$S^2 M L^2 - BBAM$ Method

Main Contributions

(1) We develop a novel SSMLL method, namely $S^2ML^2 - BBAM$, by balancing the variance bias between positive and negative samples from the perspective of the feature angle distribution for each label.

(2) We design a new BBAM loss by extending the traditional binary angular margin loss with feature angle distribution transformations under the Gaussian assumption.

(3) We suggest an efficient prototype-based negative sampling method to maintain high-quality negative samples for each label.

(4) We construct extensive experiments to evaluate $S^2 M L^2 - BBAM$.

We propose a novel Balanced Binary Angular Margin (BBAM) loss $\{BBAM(\cdot, \cdot), aiming to balance the variance bias of positive and negative samples for each label from the feature angle distribution perspective with the Gaussian assumption.$

$$\begin{split} \mathcal{L}(\mathbf{W}) = & \frac{1}{B_l K} \sum_{i=1}^{B_l} \sum_{k=1}^K \beta_{ik} \ell_{\text{BBAM}}(p_{ik}^l, y_{ik}^l) \\ &+ \frac{\lambda}{B_u K} \sum_{i=1}^{B_u} \sum_{k=1}^K \beta_{ik} \ell_{\text{BBAM}}(p_{ik}^u, y_{ik}^u) \end{split} \qquad \beta_{ik} = \begin{cases} 1 & \text{if } (\mathbf{x}_i, \mathbf{y}_i) \in \Omega_k; \\ 1 & \text{if } y_{ik} = 1; \\ 0 & \text{otherwise}, \end{cases} \qquad \forall k \in [K], \ \forall i \in [N_l] \text{ or } [N_u] \end{cases}$$

 Ωk denotes high-quality negative sample sets constructed by negative sampling.

Pseudo-labels of unlabeled data $\{y_i^u\}_{i=1}^{i=N_u}$ are produced by employing the Class-Aware Pesudo-labeling (CAP) trick.

BBAM loss is extended from the Binary Angular Margin (BAM) loss, which measures the label-specific prediction risk by using the angle between the latent feature and

boundary.

$$\ell_{\text{BAM}}(p_{ik}, y_{ik}) = \begin{cases} -\log(\frac{1}{1+e^{-s*(p_{ik}-m)}}) & \text{if } y_{ik} = 1; \\ -\log(1 - \frac{1}{1+e^{-s*(p_{ik}-m)}}) & \text{if } y_{ik} = 0 \end{cases}$$
$$p_{ik} = \cos(\theta_{ik}) = \frac{\mathbf{z}_i^{\top} \mathbf{W}_k^c}{\|\mathbf{z}_i\|_2 \|\mathbf{W}_k^c\|_2}$$

$$\ell_{\text{BBAM}}(p_{ik}, y_{ik}) = \begin{cases} -\log(\frac{1}{1+e^{-s*(\cos(\psi_k^{(p)}(\theta_{ik}))-m)}}) & \text{if } y_{ik} = 1; \\ -\log(1-\frac{1}{1+e^{-s*(\cos(\psi_k^{(n)}(\theta_{ik}))-m)}}) & \text{if } y_{ik} = 0. \end{cases}$$

To address the previously mentioned variance bias, for each category k, we suppose that label angles of its positive samples and ones of its negative samples are drawn from a label-specific "positive" Gaussian distribution $\mathcal{N}(\mu_k^{(p)}, (\sigma_k^2)^{(p)})$ and a label-specific "negative" one $\mathcal{N}(\mu_k^{(p)}, (\sigma_k^2)^{(p)})$, respectively.

According to the properties of Gaussian distribution, we can easily transfer their variance to consistency.

We approximate $\{(\mu_k^{(p)}, (\sigma_k^2)^{(p)})\}_{k=1}^{k=K}$ and $\{(\mu_k^{(n)}, (\sigma_k^2)^{(n)})\}_{k=1}^{k=K}$ with labeled and pseudo-labeled samples per-epoch.

The label angles between label prototypes and latent features of samples are given by:

$$\phi_{ik} = \arccos(\frac{\mathbf{z}_i^{\top} \mathbf{c}_k}{\|\mathbf{z}_i\|_2 \|\mathbf{c}_k\|_2}), \ \forall k \in [K], \ \forall i \in [N_l + N_u]$$

 c_k is label prototype and z_i is latent feature.

Accordingly, the estimations of above can be formulated as:

$$\mu_k^{(p)} = \frac{\sum_{i=1}^{N_l+N_u} \mathbb{I}(y_{ik}=1)\phi_{ik}}{\sum_{i=1}^{N_l+N_u} \mathbb{I}(y_{ik}=1)}, \qquad \mu_k^{(n)} = \frac{\sum_{i=1}^{N_l+N_u} \beta_{ik} \mathbb{I}(y_{ik}=0)\phi_{ik}}{\sum_{i=1}^{N_l+N_u} \beta_{ik} \mathbb{I}(y_{ik}=0)}, \\ (\sigma_k^2)^{(p)} = \frac{\sum_{i=1}^{N_l+N_u} \mathbb{I}(y_{ik}=1)(\phi_{ik}-\mu_k^{(p)})^2}{\sum_{i=1}^{N_l+N_u} \mathbb{I}(y_{ik}=1)-1} \qquad (\sigma_k^2)^{(n)} = \frac{\sum_{i=1}^{N_l+N_u} \beta_{ik} \mathbb{I}(y_{ik}=0)(\phi_{ik}-\mu_k^{(n)})^2}{\sum_{i=1}^{N_l+N_u} \beta_{ik} \mathbb{I}(y_{ik}=0)-1}$$

To further alleviate the imbalance issue of positive and negative samples for each category, we also introduce negative sampling techniques.

For each category, we measure similarity scores of negative samples based on label prototypes, and construct a combination based on selecting the nearest negative samples.

The final negative sample sets are generated by :

 $\Omega_k = \{ (\mathbf{x}_i, \mathbf{y}_i) | (\mathbf{x}_i, \mathbf{y}_i) \sim \text{Uniform}(\widetilde{\Omega}_k) \} \quad \forall k \in [K].$

with size:
$$\{|\Omega_k| = \eta N_k\}_{k=1}^{k=K}$$
, where $N_k = \sum_{i=1}^{N_l} \mathbb{I}(y_{ik}^l = 1) + \sum_{i=1}^{N_u} \mathbb{I}(y_{ik}^u = 1)$

η controls the proportion of positive and negative samples of each category.

Experimental Result

	VOC																			
Method	Micro-F1↑ Macro-F1↑						mAP↑				Hamming Loss↓				One Loss↓					
	$\pi = 5\%$	$\pi = 10\%$	$\pi=15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi=10\%$	$\pi = 15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi=15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi=20\%$
SoftMatch	0.6542	0.7187	0.7461	0.7484	0.5868	0.6630	0.6931	0.6876	0.6295	0.7235	0.7721	0.7867	0.0594	0.0368	0.0319	0.0294	0.4398	0.1655	0.1308	0.1148
FlatMatch	0.6493	0.7038	0.7420	0.7465	0.5344	0.6313	0.6666	0.6597	0.6468	0.7430	0.7923	0.8022	0.0386	0.0322	0.0313	0.0290	0.1983	0.1366	0.1238	0.1097
MIME	0.3650	0.6607	0.7013	0.7021	0.2439	0.5442	0.6425	0.5898	0.6653	0.7553	0.8090	0.8137	0.0546	0.0407	0.0336	0.0333	0.2099	0.1218	0.0835	0.0949
DRML	0.6450	0.6525	0.7274	0.7525	0.5660	0.5339	0.6864	0.7495	0.6058	0.6852	0.7131	0.7272	0.0564	0.0518	0.0377	0.0381	0.3542	0.2888	0.1720	0.1512
CAP	0.6162	0.6573	0.6798	0.7073	0.5822	0.6308	0.6536	0.6636	0.7616	0.8216	0.8348	0.8460	0.0801	0.0675	0.0622	0.0591	0.1303	0.0918	0.0827	0.0755
S ² ml ² -bbam	0.7897	0.8401	0.8443	0.8458	0.7306	0.8015	0.8124	0.8141	0.7866	0.8345	0.8454	0.8458	0.0310	0.0259	0.0243	0.0233	0.1087	0.0867	0.0817	0.0795
										C	0CO									

Method		Micro-F1↑ Macro-F1↑							mAP↑				Hamming Loss↓				One Loss↓			
	$\pi = 5\%$	$\pi = 10\%$	$\pi=15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi=15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20$
SoftMatch	0.5763	0.6273	0.6487	0.6676	0.4283	0.5265	0.5493	0.5830	0.5624	0.6194	0.6395	0.6622	0.0235	0.0218	0.0211	0.0205	0.1293	0.0948	0.0844	0.0879
FlatMatch	0.5960	0.6389	0.6590	0.6720	0.4794	0.5341	0.5710	0.5870	0.5827	0.6335	0.6542	0.6654	0.0227	0.0213	0.0208	0.0203	0.1215	0.1002	0.0933	0.0878
MIME	0.2982	0.4378	0.4906	0.5323	0.2557	0.3731	0.4096	0.4545	0.5372	0.5991	0.6379	0.6633	0.0302	0.0265	0.0250	0.0236	0.1495	0.1110	0.0883	0.0799
DRML	0.6071	0.6226	0.6492	0.6486	0.5345	0.5604	0.5779	0.5867	0.5118	0.5461	0.6026	0.6177	0.0242	0.0240	0.0230	0.0223	0.1438	0.1288	0.1243	0.1039
CAP	0.5629	0.5657	0.5724	0.5696	0.5230	0.5306	0.5402	0.5416	0.6243	0.6736	0.6911	0.7041	0.0523	0.0512	0.0499	0.0558	0.1004	0.0841	0.0788	0.0726
S ² ml ² -bbam	0.6830	0.7074	0.7150	0.7246	0.6144	0.6480	0.6594	0.6726	0.6354	0.6741	0.6886	0.7023	0.0230	0.0212	0.0206	0.0201	0.1000	0.0878	0.0824	0.0799

		AWA																		
Method	Micro-F1↑				Macro-F1↑				mAP↑				Hamming Loss↓				One Loss↓			
	$\pi = 5\%$	$\pi = 10\%$	$\pi=15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi=15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$
SoftMatch	0.6992	0.6973	0.7024	0.7024	0.5476	0.5284	0.5524	0.5457	0.6368	0.6524	0.6494	0.6518	0.2160	0.2155	0.2132	0.2126	0.1580	0.08876	0.1494	0.1549
FlatMatch	0.6918	0.6977	0.6989	0.7013	0.5221	0.5487	0.5507	0.5636	0.6393	0.6459	0.6565	0.6577	0.2190	0.2167	0.2165	0.2164	0.1029	0.0936	0.1116	0.1162
MIME	0.1470	0.3889	0.4893	0.4090	0.0705	0.1830	0.2659	0.2327	0.3992	0.3803	0.4762	0.5265	0.3570	0.3290	0.3064	0.3012	0.1850	0.2091	0.1664	0.2004
DRML	0.6827	0.6856	0.6942	0.6893	0.5399	0.5541	0.5727	0.5618	0.6160	0.6246	0.6377	0.6338	0.2285	0.2270	0.2226	0.2258	0.1360	0.1801	0.2609	0.1839
CAP	0.6868	0.7065	0.7091	0.7099	0.5742	0.5864	0.5905	0.5914	0.6390	0.6415	0.6440	0.6451	0.3120	0.2727	0.2589	0.2617	0.1146	0.0933	0.1045	0.1199
S ² ML ² -BBAM	0.7213	0.7255	0.7215	0.7279	0.5853	0.5914	0.5905	0.5944	0.6419	0.6463	0.6416	0.6476	0.2091	0.2060	0.2109	0.2042	0.1206	0.1103	0.1149	0.1188

Table 3: Experimental results on text datasets. The best results are highlighted in boldface.

										Ohs	umed									
Method		Mici	o-F1↑			Maci	o-F1↑			m	AP↑			Hammi	ng Loss↓			One	Loss↓	
	$\pi = 5\%$	$\pi = 10\%$	$\pi=15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi=15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi=15\%$	$\pi=20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$
SoftMatch	0.4769	0.4478	0.4462	0.4449	0.3056	0.2366	0.2348	0.2229	0.4664	0.5106	0.5218	0.5392	0.0756	0.0798	0.0801	0.0803	0.4213	0.5036	0.5274	0.5140
FlatMatch	0.5161	0.4836	0.4254	0.4472	0.3073	0.2262	0.1904	0.1775	0.4187	0.4751	0.4993	0.5139	0.0699	0.0747	0.0831	0.0799	0.3943	0.4416	0.5824	0.5008
DRML	0.3975	0.4015	0.4185	0.4055	0.1903	0.1972	0.1996	0.2070	0.1833	0.1931	0.2083	0.2140	0.0939	0.0868	0.0873	0.0851	0.6020	0.5677	0.5760	0.5496
CAP	0.5562	0.5776	0.5819	0.5455	0.4743	0.5144	0.5285	0.5214	0.4722	0.5370	0.5740	0.5995	0.0678	0.0840	0.0752	0.0967	0.3237	0.2746	0.2541	0.2493
S ² ML ² -BBAM	0.6671	0.7100	0.7196	0.7550	0.6058	0.6515	0.6719	0.7120	0.5537	0.6345	0.6604	0.6884	0.0467	0.0409	0.0243	0.0346	0.2417	0.2186	0.2068	0.1710
																			_	
										A	APD									
Method	-	Micr	o-F1↑			Macr	o-F1↑			A/	APD AP†			Hammi	ng Loss↓			One	Loss↓	
Method	$\pi = 5\%$	Mice $\pi = 10\%$	το-F1↑ π = 15%	$\pi = 20\%$	$\pi = 5\%$	Mac $\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$A/m/\pi = 10\%$	APD AP \uparrow $\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	Hammi $\pi = 10\%$	ng Loss \downarrow $\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	One π = 10%	Loss \downarrow $\pi = 15\%$	$\pi = 20\%$
Method SoftMatch	$\pi = 5\%$ 0.3345	Mice π = 10% 0.3325	$\pi = 15\%$ 0.3325	$\pi = 20\%$ 0.3279	$\pi = 5\%$ 0.0612	Macr $\pi = 10\%$ 0.0514	$\pi = 15\%$ 0.0520	$\pi = 20\%$ 0.0481	$\pi = 5\%$ 0.3753	$A/m/\pi = 10\%$ 0.3949	APD AP \uparrow $\pi = 15\%$ 0.4084	$\pi = 20\%$ 0.3990	$\pi = 5\%$ 0.0596	Hammi π = 10% 0.0598	ng Loss↓ π = 15% 0.0598	$\pi = 20\%$ 0.0602	$\pi = 5\%$ 0.6630	One π = 10% 0.6630	Loss \downarrow $\pi = 15\%$ 0.6630	$\pi = 20\%$ 0.6627
Method SoftMatch FlatMatch	π = 5% 0.3345 0.3221	Micr π = 10% 0.3325 0.3147	$\pi = 15\%$ 0.3325 0.3155	π = 20% 0.3279 0.3155	$\pi = 5\%$ 0.0612 0.0519	Macr π = 10% 0.0514 0.0439	$\pi = 15\%$ 0.0520 0.0437	$\pi = 20\%$ 0.0481 0.0437	$\pi = 5\%$ 0.3753 0.3571	A/m/ $\pi = 10\%$ 0.3949 0.3706	APD $\pi = 15\%$ 0.4084 0.3570	$\pi = 20\%$ 0.3990 0.3621	$\pi = 5\%$ 0.0596 0.0607	Hammi $\pi = 10\%$ 0.0598 0.0614	ng Loss↓ π = 15% 0.0598 0.0613	$\pi = 20\%$ 0.0602 0.0613	$\pi = 5\%$ 0.6630 0.6629	One $\pi = 10\%$ 0.6630 0.6631	Loss \downarrow $\pi = 15\%$ 0.6630 0.6635	$\pi = 20\%$ 0.6627 0.6634
Method SoftMatch FlatMatch DRML	π = 5% 0.3345 0.3221 0.4160	Micr π = 10% 0.3325 0.3147 0.4101	ro-F1↑ π = 15% 0.3325 0.3155 0.4027	π = 20% 0.3279 0.3155 0.4130	$\pi = 5\%$ 0.0612 0.0519 0.1024	Macr π = 10% 0.0514 0.0439 0.1005	ro-F1↑ π = 15% 0.0520 0.0437 0.0998	$\pi = 20\%$ 0.0481 0.0437 0.1052	$\pi = 5\%$ 0.3753 0.3571 0.1465	$A/m/\pi = 10\%$ 0.3949 0.3706 0.1538	APD $\pi = 15\%$ 0.4084 0.3570 0.1579	$\pi = 20\%$ 0.3990 0.3621 0.1591	$\pi = 5\%$ 0.0596 0.0607 0.0545	Hammi $\pi = 10\%$ 0.0598 0.0614 0.0578	ng Loss↓ π = 15% 0.0598 0.0613 0.0521	$\pi = 20\%$ 0.0602 0.0613 0.0542	$\pi = 5\%$ 0.6630 0.6629 0.5450	One $\pi = 10\%$ 0.6630 0.6631 0.5910	Loss \downarrow $\pi = 15\%$ 0.6630 0.6635 0.5280	$\pi = 20\%$ 0.6627 0.6634 0.5430
Method SoftMatch FlatMatch DRML CAP	$\pi = 5\%$ 0.3345 0.3221 0.4160 0.5722	Mice π = 10% 0.3325 0.3147 0.4101 0.5726	$\pi = 15\%$ $\pi = 15\%$ 0.3325 0.3155 0.4027 0.5504	$\pi = 20\%$ 0.3279 0.3155 0.4130 0.5026	$\pi = 5\%$ 0.0612 0.0519 0.1024 0.3917	Macr $\pi = 10\%$ 0.0514 0.0439 0.1005 0.4310	$\pi = 15\%$ $\pi = 15\%$ 0.0520 0.0437 0.0998 0.4257	$\pi = 20\%$ 0.0481 0.0437 0.1052 0.4051	$\pi = 5\%$ 0.3753 0.3571 0.1465 0.4095	A/m = 10% $\pi = 10\%$ 0.3949 0.3706 0.1538 0.4696	APD $\pi = 15\%$ 0.4084 0.3570 0.1579 0.4899	$\pi = 20\%$ 0.3990 0.3621 0.1591 0.4932	$\pi = 5\%$ 0.0596 0.0607 0.0545 0.0432	Hammi $\pi = 10\%$ 0.0598 0.0614 0.0578 0.0498	ng Loss↓ π = 15% 0.0598 0.0613 0.0521 0.0571	$\pi = 20\%$ 0.0602 0.0613 0.0542 0.0742	$\pi = 5\%$ 0.6630 0.6629 0.5450 0.3010	One $\pi = 10\%$ 0.6630 0.6631 0.5910 0.2461	Loss \downarrow $\pi = 15\%$ 0.6630 0.6635 0.5280 0.2523	$\pi = 20\%$ 0.6627 0.6634 0.5430 0.2384
Method SoftMatch FlatMatch DRML CAP S ² ML ² -BBAM	$\pi = 5\%$ 0.3345 0.3221 0.4160 0.5722 0.7057	Mice $\pi = 10\%$ 0.3325 0.3147 0.4101 0.5726 0.7279	$\pi = 15\%$ $\pi = 15\%$ 0.3325 0.3155 0.4027 0.5504 0.7312	$\pi = 20\%$ 0.3279 0.3155 0.4130 0.5026 0.7316	$\pi = 5\%$ 0.0612 0.0519 0.1024 0.3917 0.5091	Macr π = 10% 0.0514 0.0439 0.1005 0.4310 0.5825	ro-F1↑ π = 15% 0.0520 0.0437 0.0998 0.4257 0.5706	$\pi = 20\%$ 0.0481 0.0437 0.1052 0.4051 0.5823	$\pi = 5\%$ 0.3753 0.3571 0.1465 0.4095 0.5153	A/m/ $\pi = 10\%$ 0.3949 0.3706 0.1538 0.4696 0.5903	APD $\pi = 15\%$ 0.4084 0.3570 0.1579 0.4899 0.5804	$\pi = 20\%$ 0.3990 0.3621 0.1591 0.4932 0.5930	$\pi = 5\%$ 0.0596 0.0607 0.0545 0.0432 0.0262	Hammi π = 10% 0.0598 0.0614 0.0578 0.0498 0.0241	ng Loss↓ π = 15% 0.0598 0.0613 0.0521 0.0571 0.0238	$\pi = 20\%$ 0.0602 0.0613 0.0542 0.0742 0.0742	$\pi = 5\%$ 0.6630 0.6629 0.5450 0.3010 0.1821	One $\pi = 10\%$ 0.6630 0.6631 0.5910 0.2461 0.1500	Loss \downarrow $\pi = 15\%$ 0.6630 0.6635 0.5280 0.2523 0.1550	$\pi = 20\%$ 0.6627 0.6634 0.5430 0.2384 0.1590

Overall, our method achieved good performance on all five metrics.

Our model ranks first on average on five datasets and has a significant advantage over other methods.

The comparison between macro-f1 and micro-f1 show that the fairness has been improved after apply our method.

Table 4: Results of the ablative study on VOC2012 and COCO.

	VOC													
Metric	$\pi = 1$	5%	$\pi = 1$.0%	$\pi = 1$	5%	$\pi = 20\%$							
	S ² ML ² -BBAM	w/o BBAM	S ² ML ² -BBAM	w/o BBAM	S ² ML ² -BBAM	w/o BBAM	S ² ML ² -BBAM	w/o BBAN						
Micro-F1	0.7897	0.7845	0.8401	0.8206	0.8443	0.8301	0.8458	0.8318						
Macro-F1	0.7306	0.7247	0.8015	0.7789	0.8124	0.7988	0.8141	0.7967						
mAP	0.7866	0.7881	0.8345	0.8204	0.8454	0.8274	0.8458	0.8282						
				CO	CO									
Metric	$\pi = 1$	5%	$\pi = 1$.0%	$\pi = 1$	5%	$\pi = 2$	0%						
	S ² ML ² -BBAM	w/o BBAM	S ² ML ² -BBAM	w/o BBAM	S ² ML ² -BBAM	w/o BBAM	S ² ML ² -BBAM	w/o BBAN						
Micro-F1	0.6830	0.6691	0.7074	0.6952	0.7150	0.7052	0.7246	0.7143						
Macro-F1	0.6144	0.5885	0.6480	0.6264	0.6594	0.6424	0.6726	0.6530						
mAP	0.6354	0.5894	0.6741	0.6316	0.6886	0.6520	0.7023	0.6628						

Figure 2: Comparison of VDFD on VOC2012.

The ablation study result indicate that our method can significantly reduce variance differences. And constraining the angle variance between positive and negative samples can effectively improve the accuracy.

