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Type of
DLF. Ummenhofer et al. [ICRL 2020]

NeuroFluid. Guan et al. [ICML 2022]

MLS-MPM. Hu et al. [TOG 2018]

PAC-NeRF. Li et al. [ICLR 2023]
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Problem: How to accurately infer the underlying intrinsic 
dynamics from the visual observations?
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Framework



Interested in

3D representation 𝒦0

Physical state 𝒔0

Center 𝒙0 𝑖

Opacity 𝛼0 𝑖

Cov 𝑨0 𝑖

SH 𝒄0 𝑖

Position 𝒑0 𝑗

Velocity 𝒗0 𝑗

Def. grad. 𝑭0
𝑒 𝑗

Stage I

For detailed implementations, please refer to Section 3.1 of our paper. 
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Average C.D.

NeuMA (Ours) 1.31×10-4

NeuMA w/o Bind 6.60×10-4

Stage I – 
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Stage II

Neural Constitutive Laws. Ma et al. [ICML 2023]



Stage II

Low-rank Adaptation. Hu et al. [ICLR 2021]



Stage III

For detailed implementations, please refer to Section 3.3 of our paper. 
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Backpropagation

For detailed implementations, please refer to Section 3.3 of our paper. 
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Interpolation Results

Prior 𝑤 = 1/16 𝑤 = 1/4 𝑤 = 1/2 𝑤 = 3/4 𝑤 = 1 Observation



Generation Results 
Applied dynamics



Thanks for watching!

We have released our code and data :)


