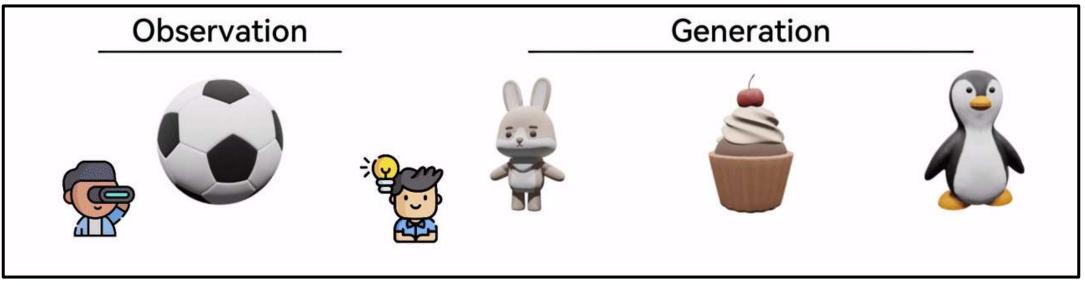


NeuMA: Neural Material Adaptor for Visual Grounding of Intrinsic Dynamics

Junyi Cao¹, Shanyan Guan², Yanhao Ge², Wei Li², Xiaokang Yang¹, Chao Ma¹

1: Shanghai Jiao Tong University 2: vivo Mobile Communication Co., Ltd.



38th Conference on Neural Information Processing Systems (NeurIPS 2024)

Visual Dynamics Grounding

Rough guess of Physical material Initial condition (gravity, velocity ...)

 Imagine similar dynamics for Novel objects
 Unseen environments Elastic Material

Visual Dynamics Grounding

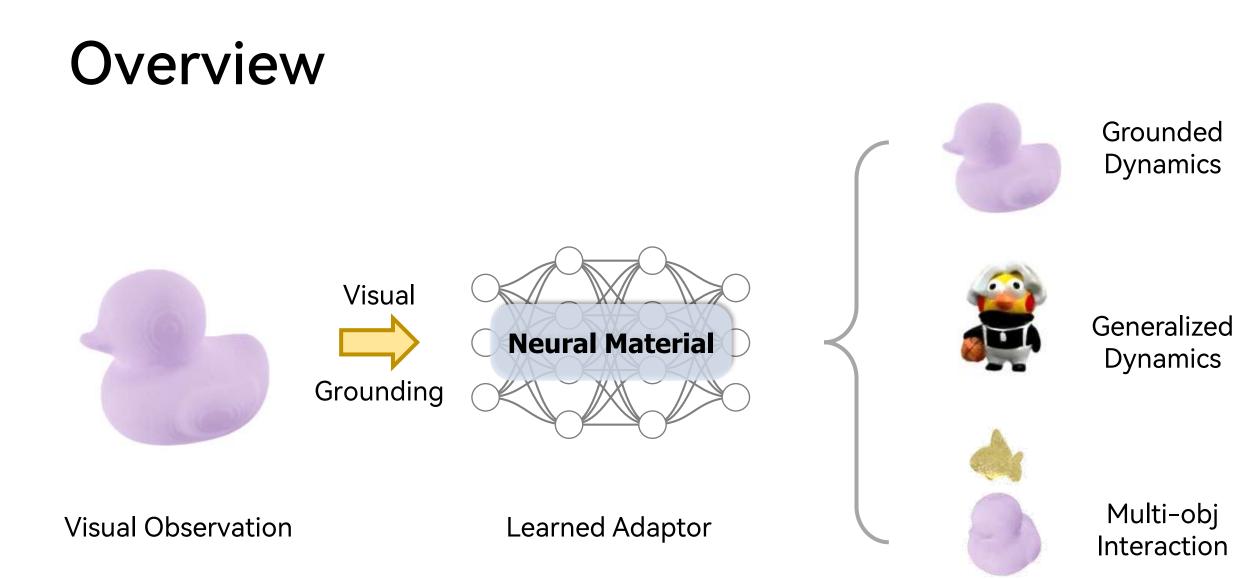
Rough guess of Physical material Initial condition (gravity, velocity ...)

 Imagine similar dynamics for Novel objects
 Unseen environments

 Plastic Material

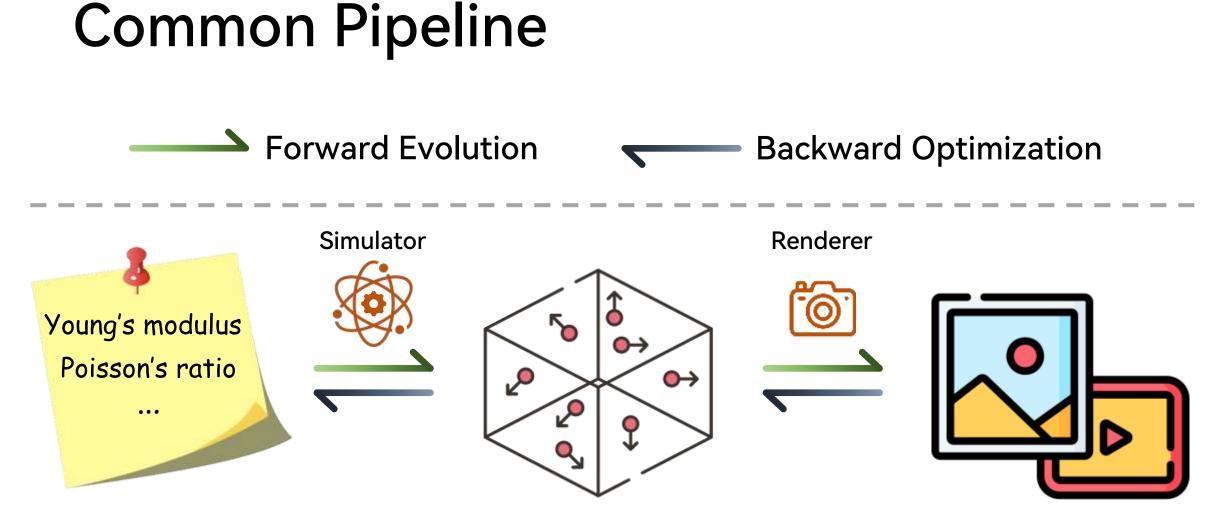
Different materials lead to different dynamics

Overview



Sections

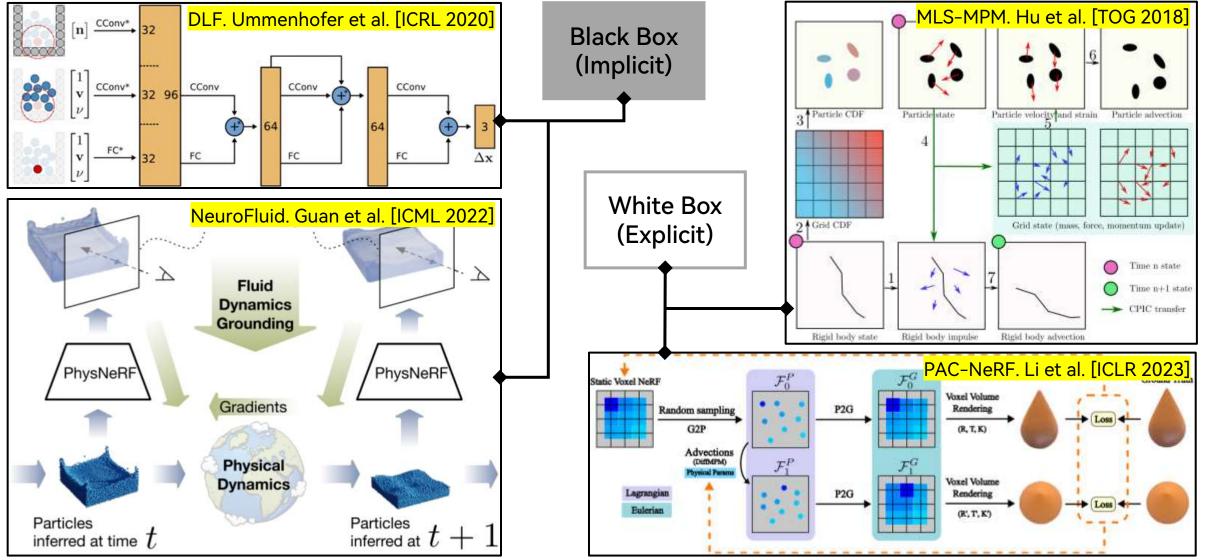
- Related Work
- Methodology
- Results



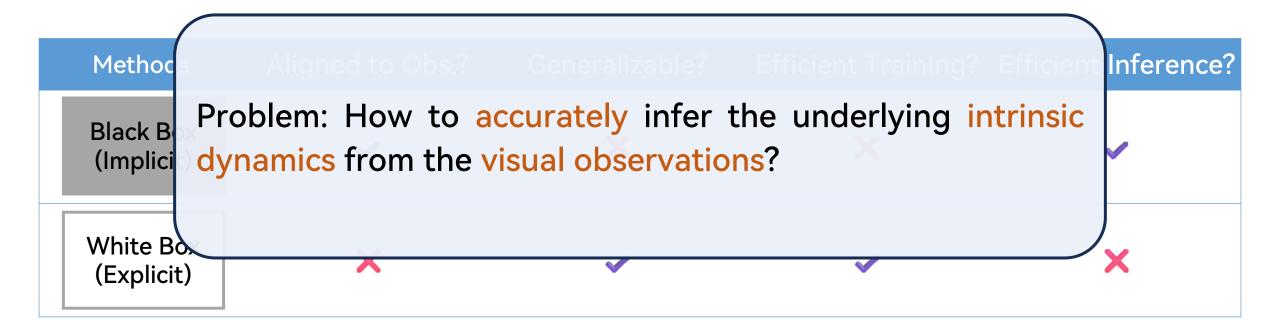
Physical Property

Simulation Results

Rendered Results

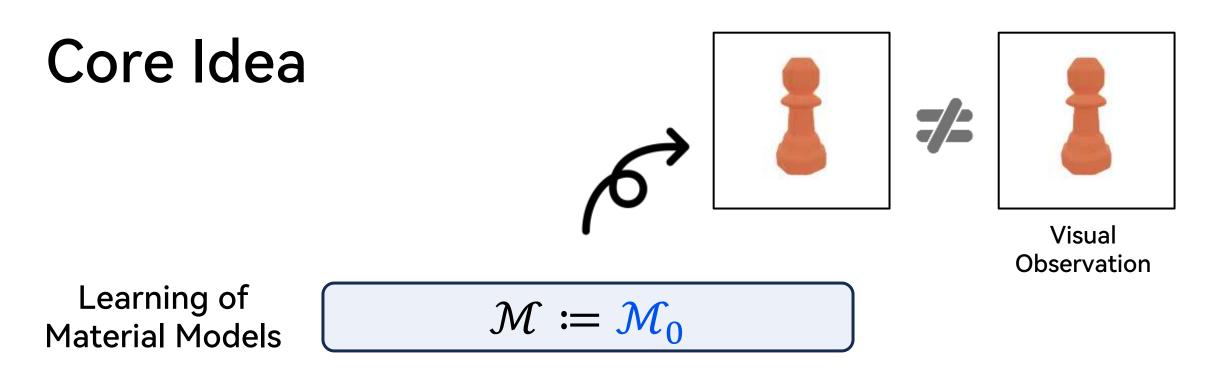


Methods	Aligned to Obs.?	Generalizable?	Efficient Training?	Efficient Inference?
Black Box (Implicit)	~	×	×	~
White Box (Explicit)	×	~	~	×

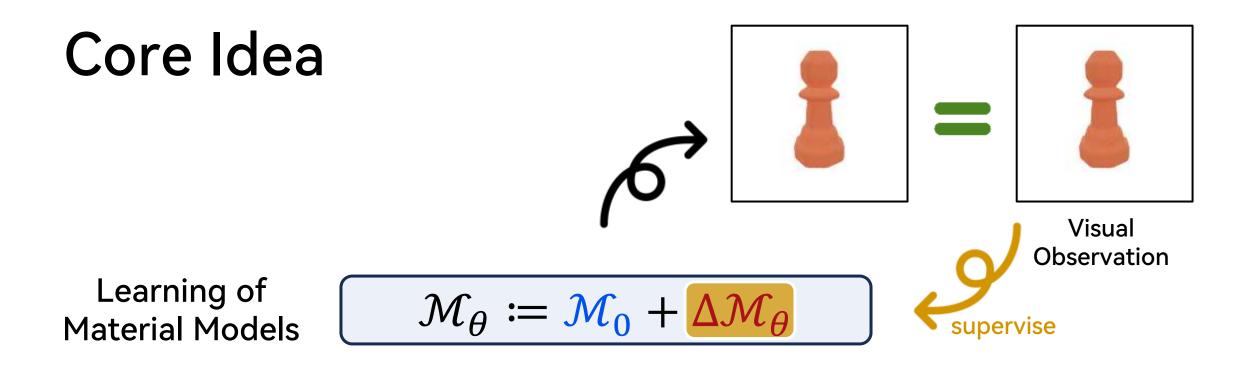


Sections

- Background
- Methodology
- Results



Physical prior e.g., von Mises Plasticity

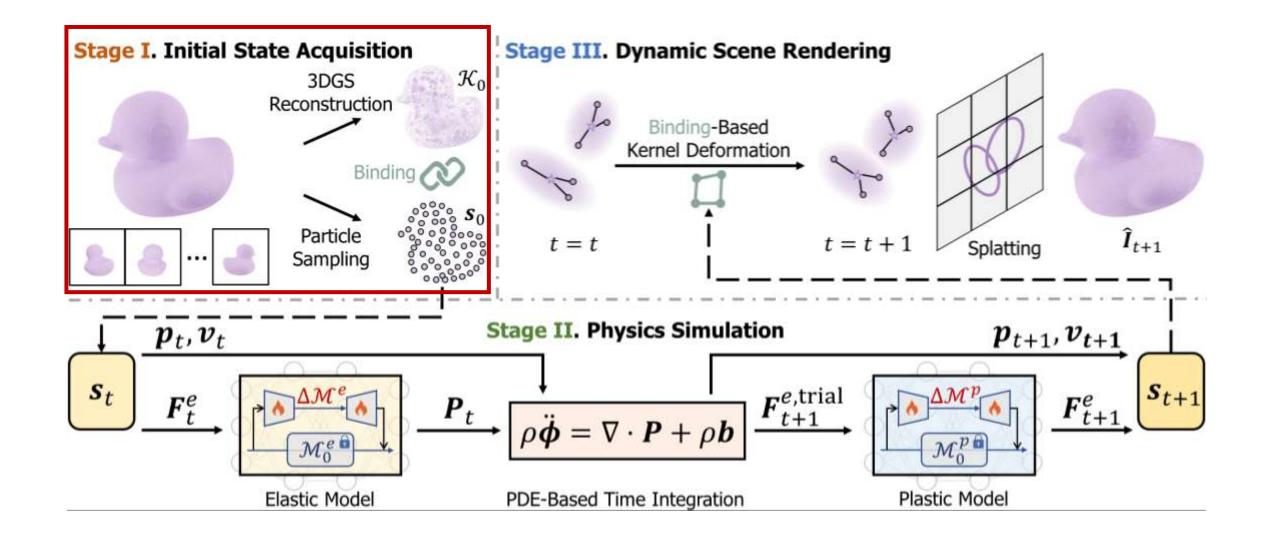


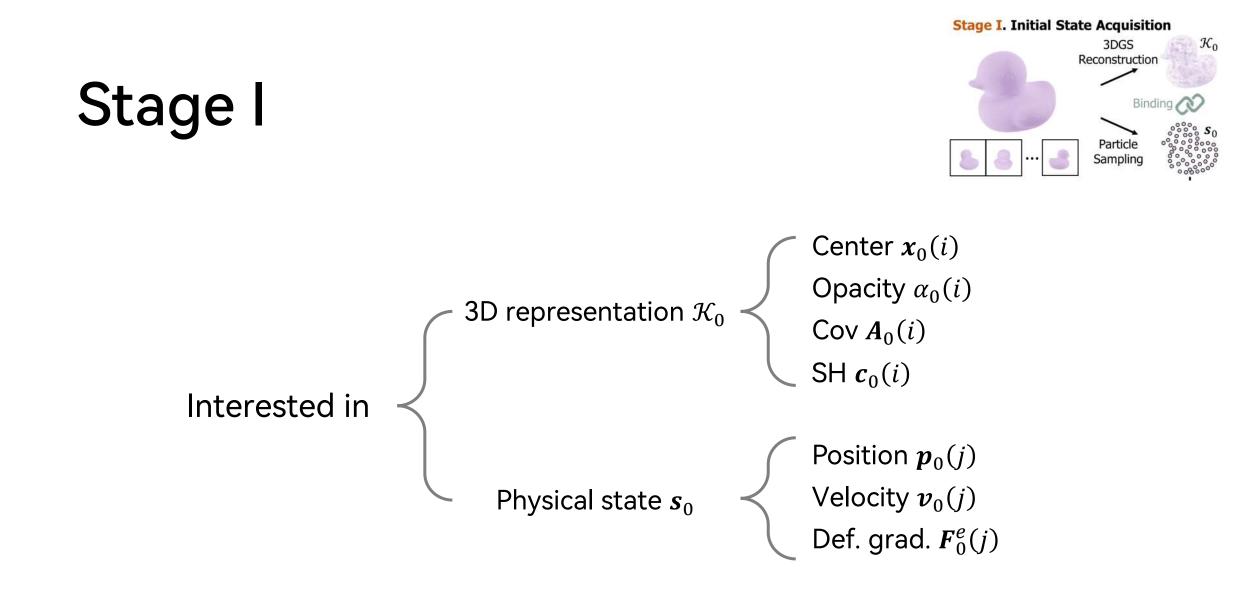
Residual correction adapted to visual observations

Core Idea

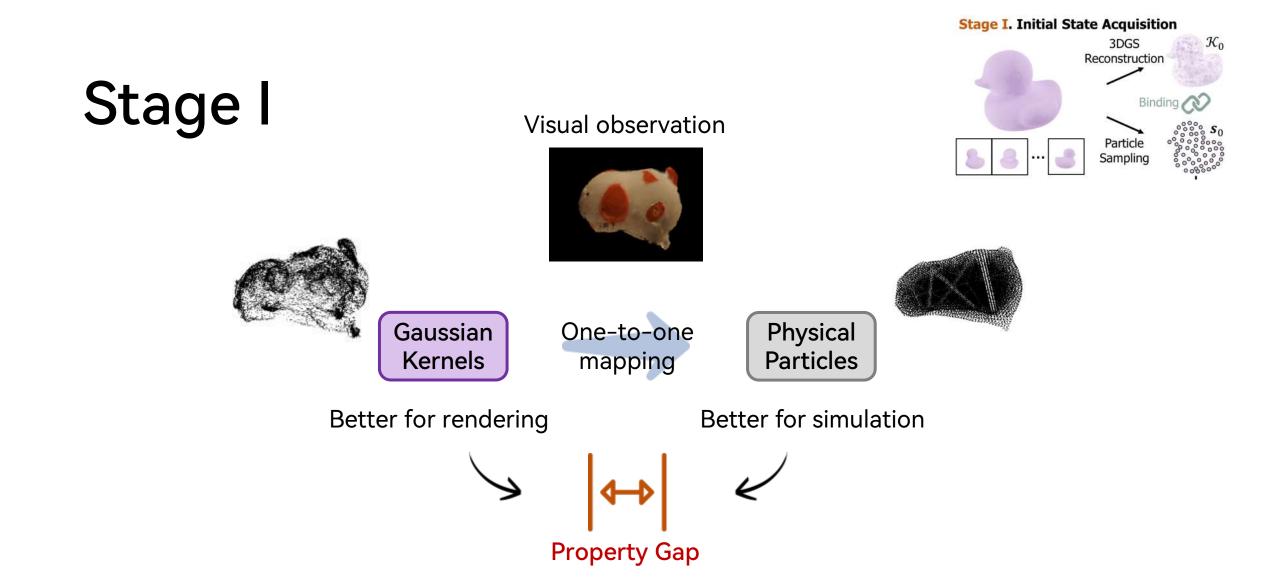
Methods	Aligned to Obs.?	Generalizable?	Efficient Training?	Efficient Inference?
Black Box (Implicit)	~	×	×	~
White Box (Explicit)	×	~	~	×
$\mathcal{M}_{ heta} \coloneqq \mathcal{M}_0 + \Delta \mathcal{M}_{ heta}$		~	~	~

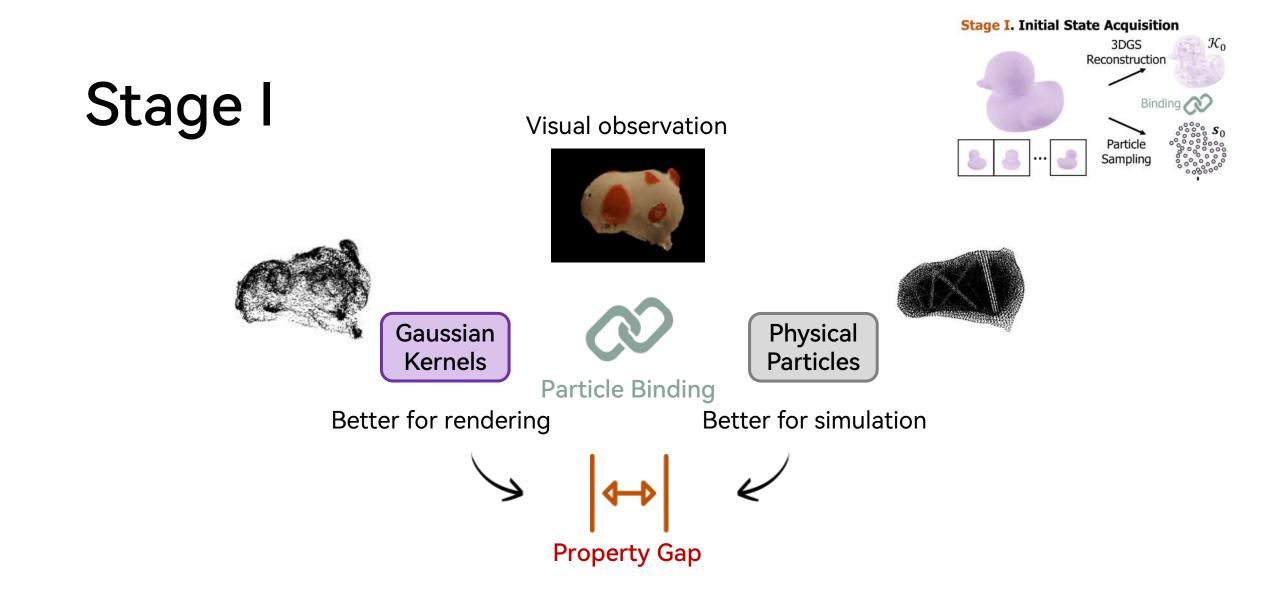
Framework



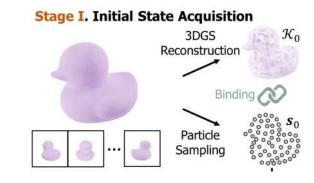


For detailed implementations, please refer to Section 3.1 of our paper.

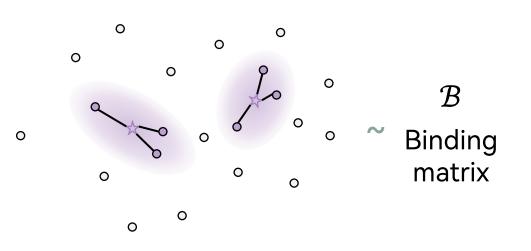


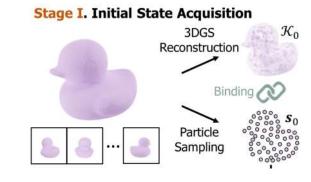


Stage I – 🔊



Algorithm 1: Particle Binding **Input:** Gaussian centers $\{x(i)\}_{i=1}^{N_K}$, Gaussian covariance $\{A(i)\}_{i=1}^{N_K}$, particle positions $\{p_0(j)\}_{j=1}^{N_P}$, confidence threshold τ Output: Binding matrix B 1 $\mathcal{B} = \operatorname{zeros}(N_K, N_P);$ 2 for $i \leftarrow 1$ to N_K do for $j \leftarrow 1$ to N_P do 3 // Mahalanobis distance $d_{\mathbf{m}} = \left(\boldsymbol{p}_0(j) - \boldsymbol{x}(i) \right)^\top \boldsymbol{A}(i)^{-1} \left(\boldsymbol{p}_0(j) - \boldsymbol{x}(i) \right);$ 4 // Check the threshold if $d_{\rm m} \leq {\rm chi2}(\tau)$ then 5 $\mathcal{B}(i, j) = 1;$ 6 7 end end 8 // Normalize for each row $\mathcal{B}(i,:) = \mathcal{B}(i,:) / (\operatorname{sum}(\mathcal{B}(I,:)));$ 9 10 end

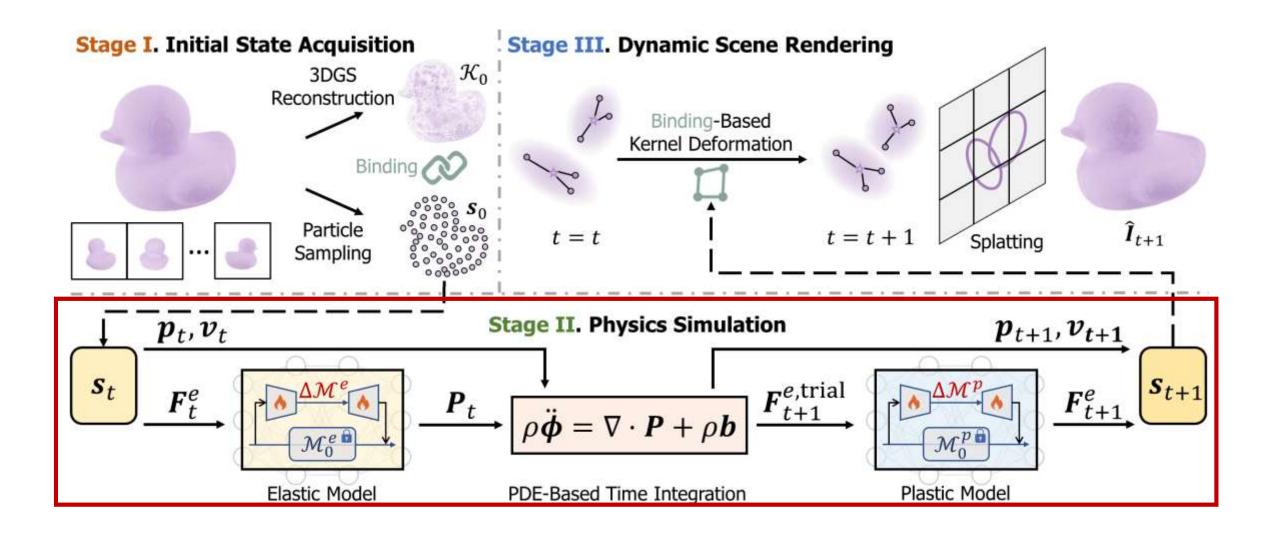




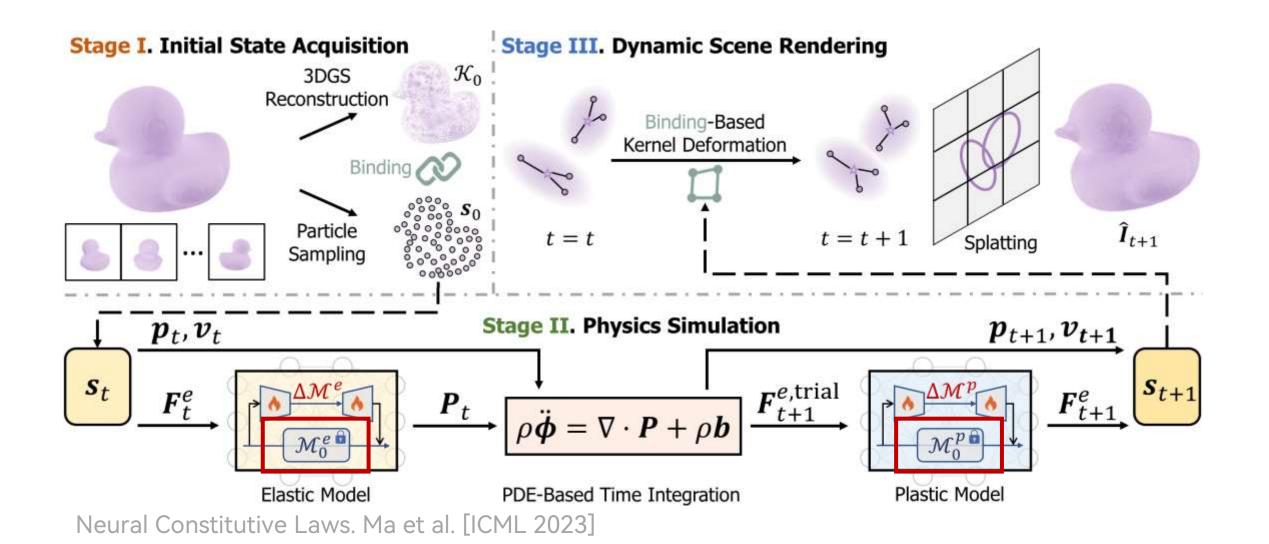
Algorithm 1: Particle Binding **Input:** Gaussian centers $\{x(i)\}_{i=1}^{N_K}$, Gaussian covariance $\{A(i)\}_{i=1}^{N_K}$, particle positions $\{p_0(j)\}_{j=1}^{N_P}$, confid 0 Output: Binding matrix B 0 1 $\mathcal{B} = \operatorname{zeros}(N_K, N_P);$ Average C.D. 2 for $i \leftarrow 1$ to N_K do 0 \mathcal{B} for $j \leftarrow 1$ to N_P do 3 // Mahalanobis distan NeuMA (Ours) 1.31×10⁻⁴ \checkmark 0 $d_{\rm m} = \left(\boldsymbol{p}_0(j) - \boldsymbol{x}(i)\right)^{\top} \boldsymbol{A}(j)$ \sim 4 Binding 0 0 // Check the threshold 6.60×10⁻⁴ Х NeuMA w/o Bind if $d_{\rm m} \leq {\rm chi2}(\tau)$ then 5 matrix 0 $\mathcal{B}(i,j) = 1;$ 6 0 end 7 end 8 0 0 // Normalize for each row $\mathcal{B}(i,:) = \mathcal{B}(i,:) / (\operatorname{sum}(\mathcal{B}(I,:)));$ 9 10 end

Stage I – 🔊

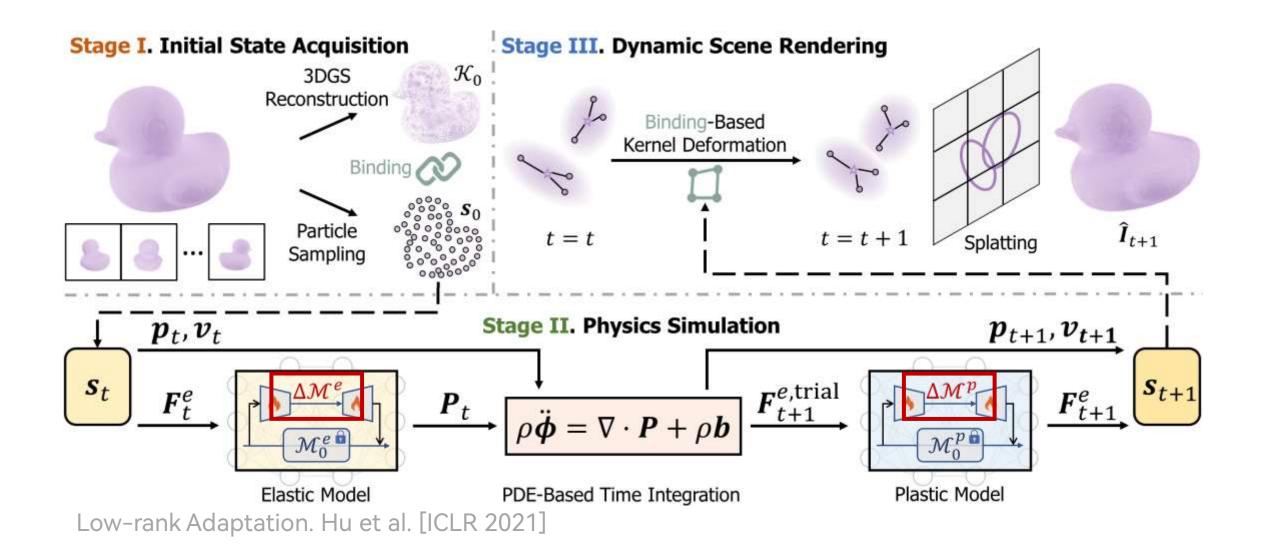
Stage II



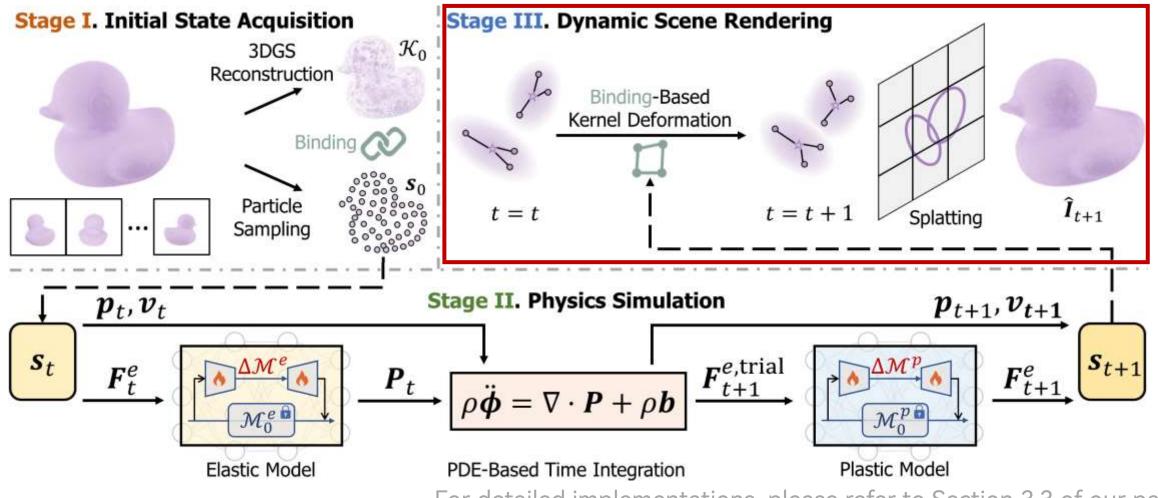
Stage II



Stage II

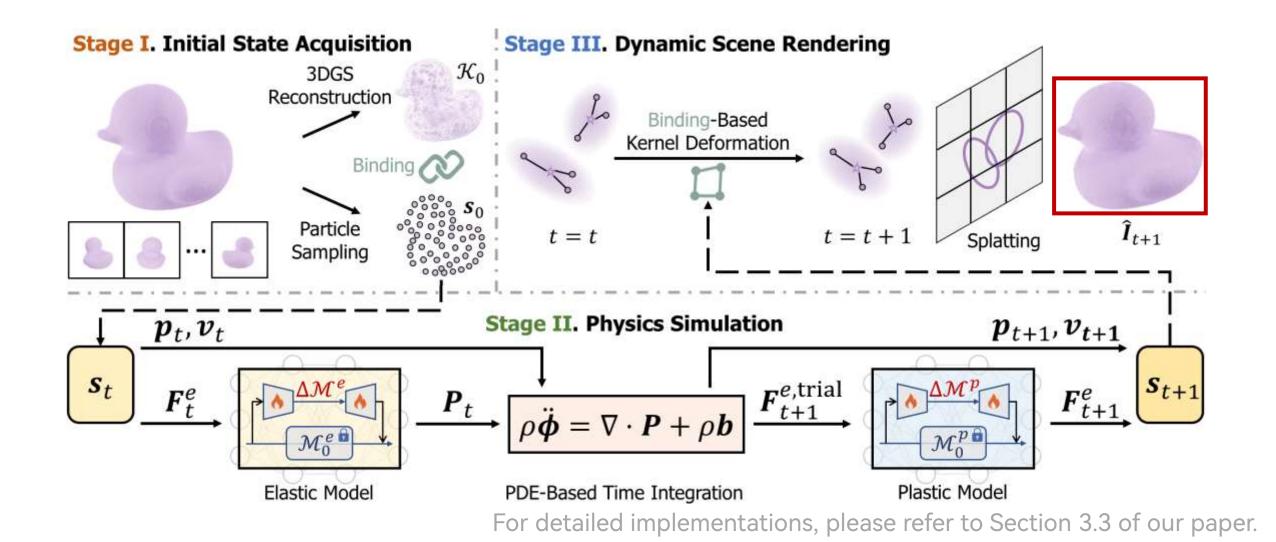


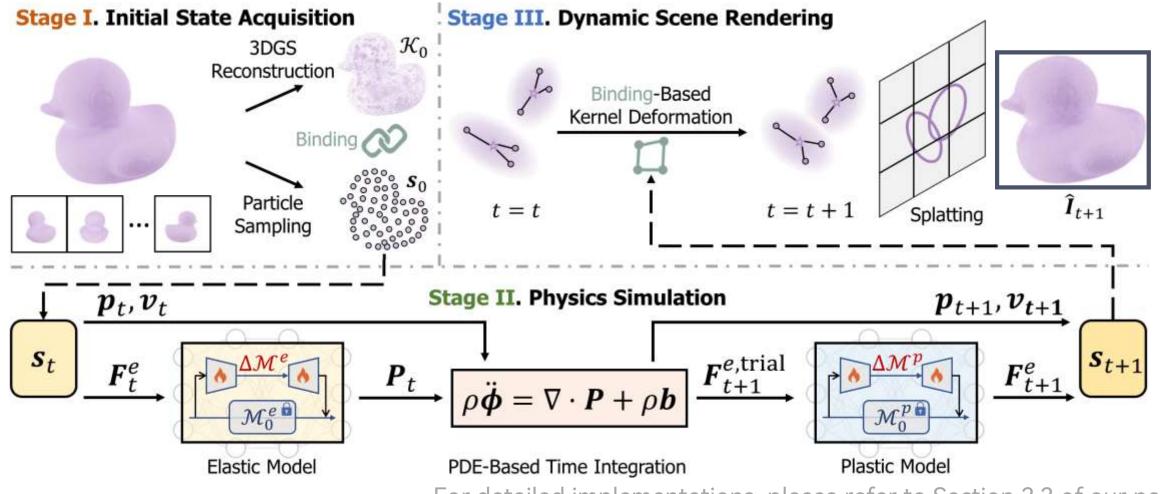
Stage III



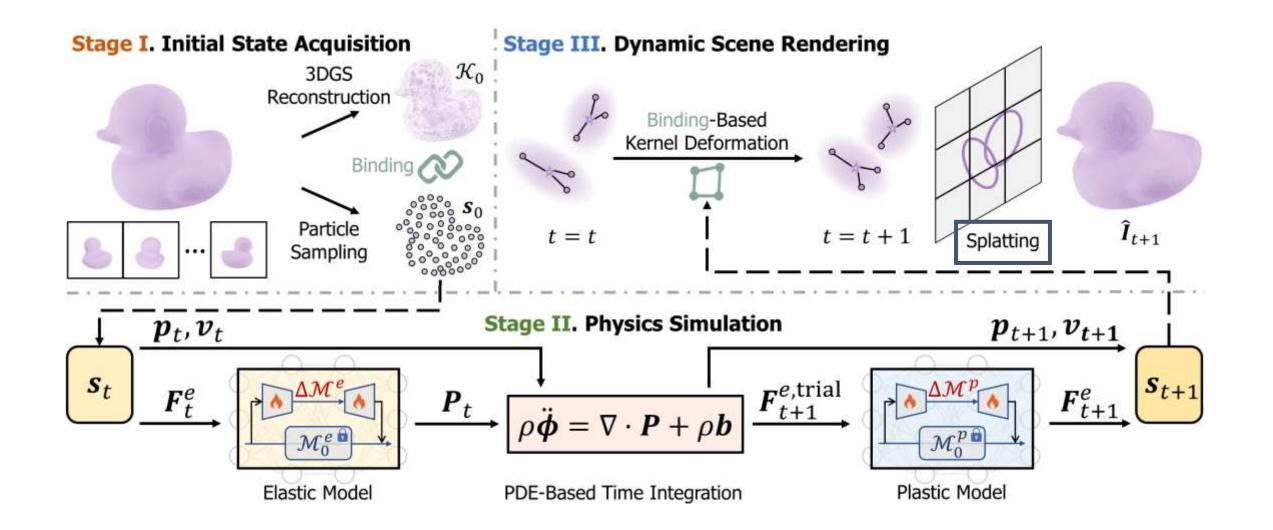
For detailed implementations, please refer to Section 3.3 of our paper.

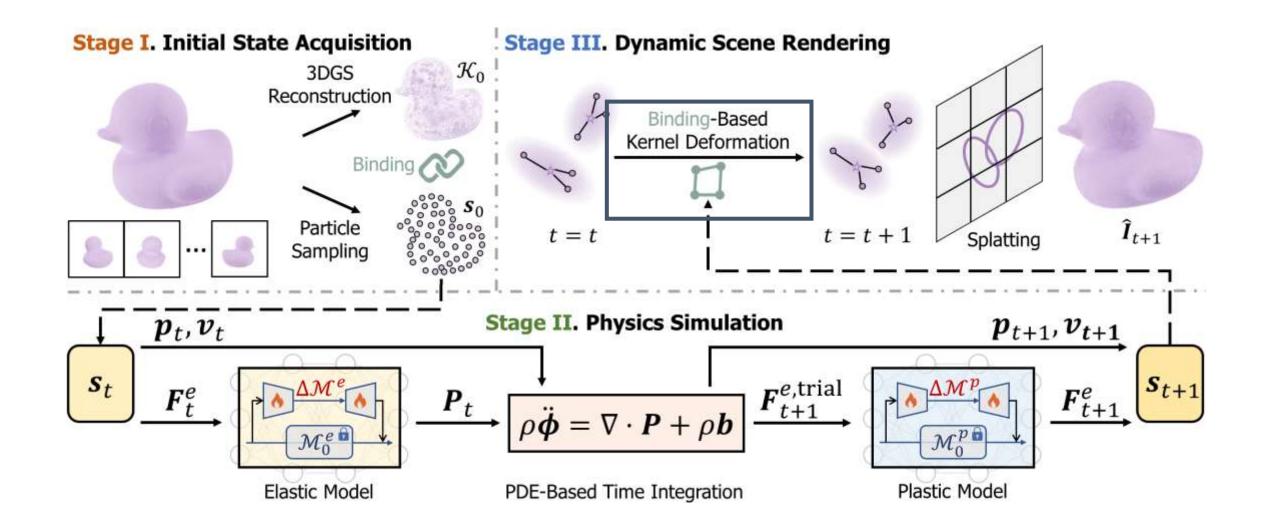
Stage III

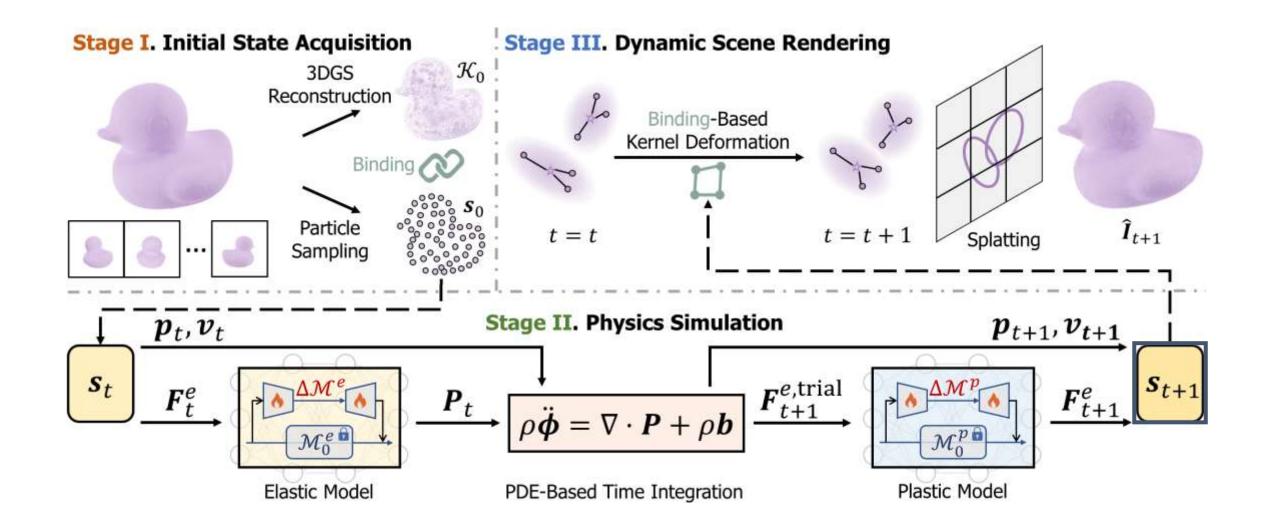


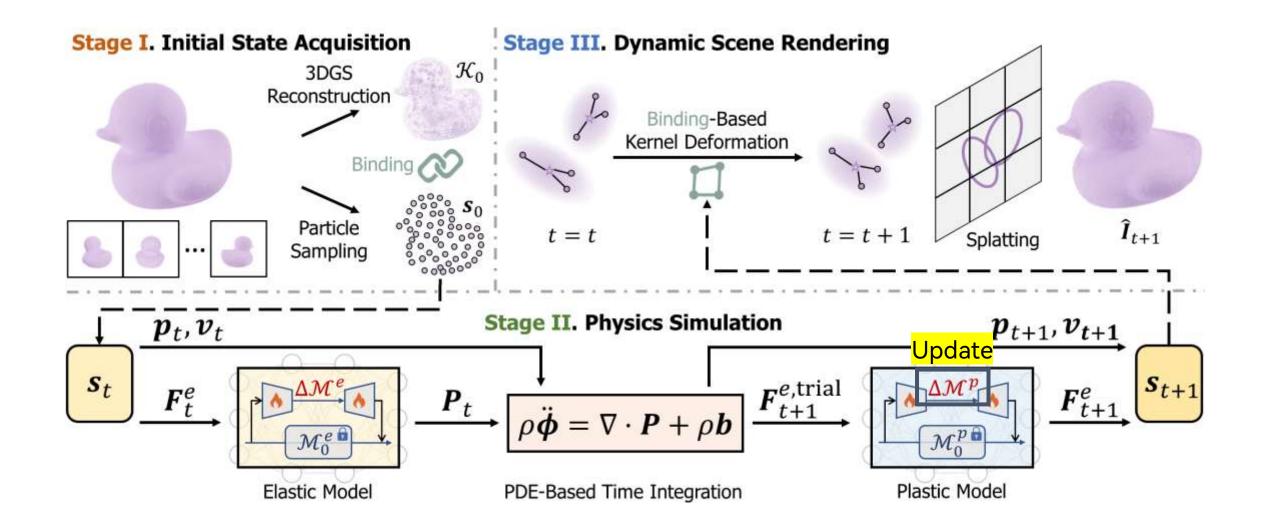


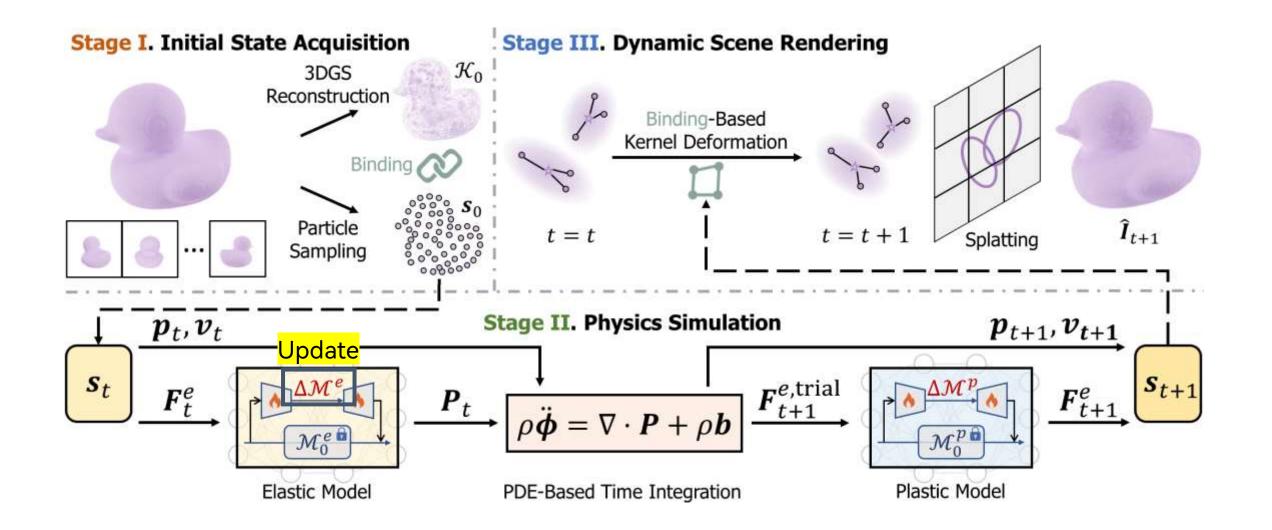
For detailed implementations, please refer to Section 3.3 of our paper.







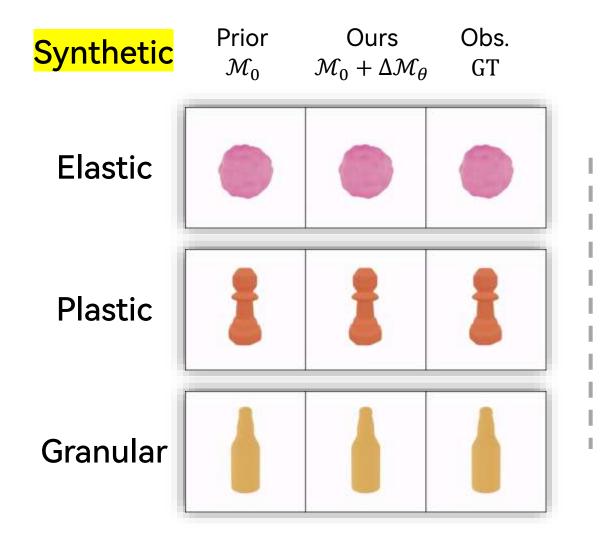


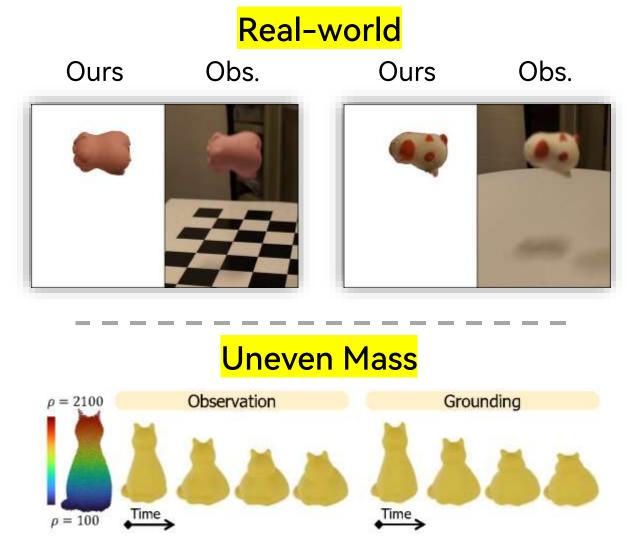


Sections

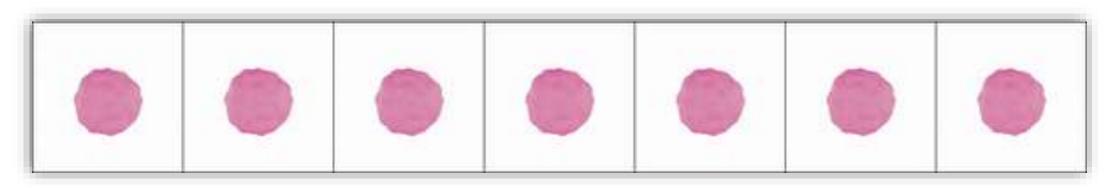
- Background
- Methodology
- Results

Grounding Results

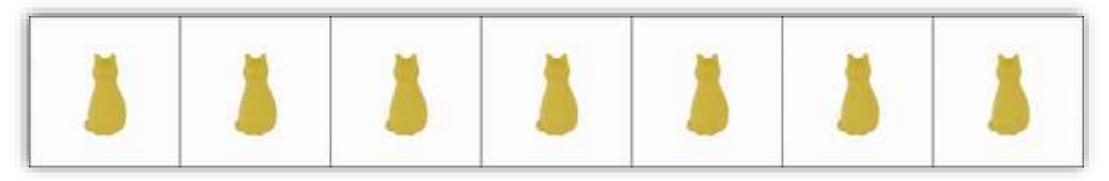




Interpolation Results



Prior w = 1/16 w = 1/4 w = 1/2 w = 3/4 w = 1 Observation



Generation Results

Applied dynamics

Thanks for watching!

Github

We have released our code and data :)