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Brownian Motion (BM)

0 T

Bt

Brownian motion B = (Bt)t∈[0,T ] is a centered Gaussian process with independent increments.
process that posses correlated increments where we have for

H = 0.5: Brownian motion
H > 0.5: positively correlated increments
H < 0.5: negatively correlated increments
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Fractional Brownian Motion (fBM)

0 T

H = 0.5

Fractional Brownian motion BH = (BH
t )t∈[0,T ] with Hurst index H ∈ (0, 1) is a centered Gaussian
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Fractional Brownian Motion (fBM)

0 T

H = 0.5 H = 0.7

Fractional Brownian motion BH = (BH
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Fractional Brownian Motion (fBM)

0 T

H = 0.5 H = 0.7 H = 0.9

Fractional Brownian motion BH = (BH
t )t∈[0,T ] with Hurst index H ∈ (0, 1) is a centered Gaussian
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H = 0.5: Brownian motion
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Fractional Brownian Motion (fBM)

0 T

H = 0.5 H = 0.7 H = 0.9 H = 0.3

Fractional Brownian motion BH = (BH
t )t∈[0,T ] with Hurst index H ∈ (0, 1) is a centered Gaussian

process that posses correlated increments where we have for

H = 0.5: Brownian motion
H > 0.5: positively correlated increments
H < 0.5: negatively correlated increments
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Fractional Brownian Motion (fBM)

0 T

H = 0.5 H = 0.7 H = 0.9 H = 0.3 H = 0.1

Fractional Brownian motion BH = (BH
t )t∈[0,T ] with Hurst index H ∈ (0, 1) is a centered Gaussian

process that posses correlated increments where we have for

H = 0.5: Brownian motion
H > 0.5: positively correlated increments
H < 0.5: negatively correlated increments
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A Diffusion Model Driven by fBM?

Xt = ”X0 +

∫ t

0

µ(u)Xudu+

∫ t

0

g(u)dBH
u ”

BH is neither a Markov-process nor a Semimartingale

⇒ No Markov property or Kolmogorov equations (Fokker-Planck) to derive the reverse-time model
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Markovian Approximation of fBM (MA-fBM)

Define for every γ ∈ (0,∞) the Ornstein-Uhlenbeck process Y γ following

dY γ
t = −γY γ

t dt + dBt, Y γ
0 = 0.

Given a Hurst index H and a geometrically spaced grid γk = rk−n, define

BH
t =


∫∞
0 (Y γ

t − Y γ
0 ) ν1(γ)dγ

−
∫∞
0 ∂γ (Y

γ
t − Y γ

0 ) ν2(γ)dγ
≈

K∑
k=1

ωk(Y
k
t − Y k

0 ) =: B̂
H
t .
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Forward Dynamics

H = 0.1 H = 0.3 H = 0.5 H = 0.7 H = 0.9

Correlated OU processes

Joint OU density

Probability flow ODE trajectories

X0 XT

X0 XT

dXt = µ(t)Xtdt+ g(t) dB̂H
t

Y0 YT

Y0 YT

dYt = −γYtdt+ 1dBt

Xt|x0 = c(t)

(
x0 +

∫ t

0

α(t, s)dBs

)
∼ N (c(t)x0, c

2(t)σ2(t))
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A Diffusion Model Driven by MA-fBM - The Reverse Process

H = 0.1 H = 0.3 H = 0.5 H = 0.7 H = 0.9

Correlated OU processes

Joint OU density

Probability flow ODE trajectories

X0 XT

X0 XT

dXt = µ(t)Xtdt+ g(t)dB̂H
t

dZt =
[
F(t)Zt −G(t)G(t)T∇z log pt(Zt)

]
dt+G(t)dBt

Y0 YT

Y0 YT
dYt = [−γYt − 1K,K∇y log qt(Yt)]dt+ 1dBt

dYt = −γYtdt+ 1dBt

∇z log pt(Zt) = ...?
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Optimal Score Model

We propose augmented score matching to train the score model sθ:

L(θ) := Et

{
E
(X0,Y

[K]
t )

E
(Xt|Y[K]

t ,X0)

[
∥sθ(Xt −

∑
k

ηktY
k
t , t)−∇x log p0t(Xt|Y[K]

t ,X0)∥22

]}
.

Assume that sθ is optimal w.r.t. the augmented score matching loss L in (12). The score model

Sθ(Zt, t) :=

(
sθ(Xt −

∑
k

ηktY
k
t , t),−η1t sθ(Xt −

∑
k

ηktY
k
t , t), ...,−ηKt sθ(Xt −

∑
k

ηYk
t , t)

)

yields the optimal L2(P) approximation of ∇z log pt(Zt).
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A Score-based Model Driven by MA-fBM - The Reverse Process

H = 0.1 H = 0.3 H = 0.5 H = 0.7 H = 0.9

Correlated OU processes

Joint OU density

Probability flow ODE trajectories

X0 XT

X0 XT

dXt = µ(t)Xtdt+ g(t)dB̂H
t

dZt =
[
F(t)Zt −G(t)G(t)T∇z log pt(Zt)

]
dt+G(t)dBt

Y0 YT

Y0 YT
dYt = [−γYt − 1K,K∇y log qt(Yt)]dt+ 1dBt

dYt = −γYtdt+ 1dBt

Known guiding score function

∇z log pt(Zt) ≈ Sθ(Zt, t) +∇z log qt(Y
[K]
t ), Y[K]

t := (Y 1
t , ..., Y

K
t )
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Results: Different Hurst Indices

MNIST FID ↓ VSp ↑

BM driven

VE (retrained 10.82 24.20
VP (retrained) 1.44 23.64

MA-fBM driven

FVP(H = 0.9, K = 3) 0.72 24.18
FVP(H = 0.7, K = 3) 0.86 24.39
FVP(H = 0.9, K = 4) 1.22 24.76

CIFAR10 FID ↓ VSp ↑

BM driven

VE (retrained) 5.20 3.42
VP (retrained) 4.85 3.28

MA-fBM driven

FVP(H = 0.9, K = 1) 4.79 3.53
FVP(H = 0.7, K = 2) 4.17 3.35
FVP(H = 0.9, K = 2) 3.77 3.60

Conditional image generation on (LHS) MNIST and (RHS) CIFAR10.
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Results: Number of Function Evaluations (NFEs)

250 500 750 1000
NFE

4

6

8

10

12

14

16

Av
er

ag
ed

 F
ID

FVP(H = 0.9, K = 2)
FVP(H = 0.7, K = 2)
Purely Brownian VP
Purely Brownian VE

Averaged FID on CIFAR10 over three rounds of sampling plotted across different NFEs.
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Results: Class-wise performance

Metric Dynamics airplane automobile bird cat deer dog frog horse ship truck

FID ↓ VP 15.29 12.06 14.08 18.08 10.68 16.92 16.48 12.49 10.74 10.57
FVP(H = 0.7, K = 2) 14.67 9.55 14.02 16.97 11.05 17.14 16.43 10.97 9.91 8.81
FVP(H = 0.9, K = 2) 14.37 8.94 14.18 16.38 10.52 16.76 15.37 10.28 10.04 8.76

Recall ↑ VP 0.6814 0.6186 0.6860 0.6466 0.7002 0.6730 0.6758 0.6392 0.6468 0.5982
FVP(H = 0.7K = 2) 0.6838 0.6436 0.6870 0.6712 0.7140 0.6844 0.6922 0.6764 0.6550 0.6508
FVP(H = 0.9, K = 2) 0.7038 0.6614 0.7188 0.6842 0.7284 0.7096 0.7104 0.6806 0.6772 0.6852

Class-wise image quality and class-wise distribution coverage on CIFAR10.
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Conclusion
We propose to use MA-fBM as the driving noise process for your diffusion models

A score model that matches the dimensionality of the data suffices

We achieve higher image quality, improved pixel-wise diversity and better distribution coverage
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