# **Generative Fractional Diffusion Models**

Gabriel Nobis, Maximilian Springenberg, Marco Aversa, Michael Detzel, Rembert Daems, Roderick Murray-Smith, Shinichi Nakajima,

Sebastian Lapuschkin, Stefano Ermon, Tolga Birdal, Manfred Opper, Christoph Knochenhauer, Luis Oala, Wojciech Samek





#### Brownian Motion (BM)



Brownian motion  $B = (B_t)_{t \in [0,T]}$  is a centered Gaussian process with *independent increments*.





Fractional Brownian motion  $B^H = (B_t^H)_{t \in [0,T]}$  with Hurst index  $H \in (0,1)$  is a centered Gaussian process that posses *correlated increments* where we have for

H = 0.5: Brownian motion





Fractional Brownian motion  $B^H = (B_t^H)_{t \in [0,T]}$  with Hurst index  $H \in (0,1)$  is a centered Gaussian process that posses *correlated increments* where we have for

H = 0.5: Brownian motion

H > 0.5: positively correlated increments





Fractional Brownian motion  $B^H = (B_t^H)_{t \in [0,T]}$  with Hurst index  $H \in (0,1)$  is a centered Gaussian process that posses *correlated increments* where we have for

H = 0.5: Brownian motion H > 0.5: positively correlated increments





Fractional Brownian motion  $B^H = (B_t^H)_{t \in [0,T]}$  with Hurst index  $H \in (0,1)$  is a centered Gaussian process that posses *correlated increments* where we have for

H = 0.5: Brownian motion

H > 0.5: positively correlated increments





Fractional Brownian motion  $B^H = (B_t^H)_{t \in [0,T]}$  with Hurst index  $H \in (0,1)$  is a centered Gaussian process that posses *correlated increments* where we have for

H = 0.5: Brownian motion H > 0.5: positively correlated increments H < 0.5: negatively correlated increments





Fractional Brownian motion  $B^H = (B_t^H)_{t \in [0,T]}$  with Hurst index  $H \in (0, 1)$  is a centered Gaussian process that posses *correlated increments* where we have for

H = 0.5: Brownian motion H > 0.5: positively correlated increments H < 0.5: negatively correlated increments





Fractional Brownian motion  $B^H = (B_t^H)_{t \in [0,T]}$  with Hurst index  $H \in (0, 1)$  is a centered Gaussian process that posses *correlated increments* where we have for

H = 0.5: Brownian motion H > 0.5: positively correlated increments H < 0.5: negatively correlated increments



#### A Diffusion Model Driven by fBM?

$$X_t = \mathbf{X}_0 + \int_0^t \mu(u) X_u \mathrm{d}u + \int_0^t g(u) \mathrm{d}B_u^H \mathbf{X}_u$$

#### $B^H$ is neither a Markov-process nor a Semimartingale



#### A Diffusion Model Driven by fBM?

$$X_t = \mathbf{X}_0 + \int_0^t \mu(u) X_u \mathrm{d}u + \int_0^t g(u) \mathrm{d}B_u^H \mathbf{X}_u$$

#### $B^H$ is neither a Markov-process nor a Semimartingale

⇒ No Markov property or Kolmogorov equations (Fokker-Planck) to derive the reverse-time model



# Markovian Approximation of fBM (MA-fBM)

Define for every  $\gamma \in (0,\infty)$  the Ornstein-Uhlenbeck process  $Y^{\gamma}$  following

$$\mathbf{d}Y_t^{\gamma} = -\gamma Y_t^{\gamma} \mathbf{d}t + \mathbf{d}B_t, \quad Y_0^{\gamma} = 0.$$



# Markovian Approximation of fBM (MA-fBM)

Define for every  $\gamma \in (0,\infty)$  the Ornstein-Uhlenbeck process  $Y^\gamma$  following

$$\mathrm{d} Y_t^\gamma = -\gamma Y_t^\gamma \mathrm{d} t + \mathrm{d} B_t, \quad Y_0^\gamma = 0.$$

Given a Hurst index *H* and a geometrically spaced grid  $\gamma_k = r^{k-n}$ , define

$$B_t^H = \begin{cases} \int_0^\infty \left(Y_t^\gamma - Y_0^\gamma\right) \nu_1(\gamma) \mathrm{d}\gamma \\ -\int_0^\infty \partial_\gamma \left(Y_t^\gamma - Y_0^\gamma\right) \nu_2(\gamma) \mathrm{d}\gamma \end{cases}$$



# Markovian Approximation of fBM (MA-fBM)

Define for every  $\gamma \in (0,\infty)$  the Ornstein-Uhlenbeck process  $Y^{\gamma}$  following

$$\mathbf{d}Y_t^{\gamma} = -\gamma Y_t^{\gamma} \mathbf{d}t + \mathbf{d}B_t, \quad Y_0^{\gamma} = 0.$$

Given a Hurst index *H* and a geometrically spaced grid  $\gamma_k = r^{k-n}$ , define

$$B_t^H = \begin{cases} \int_0^\infty \left(Y_t^\gamma - Y_0^\gamma\right) \nu_1(\gamma) \mathrm{d}\gamma \\ & \qquad \approx \sum_{k=1}^K \omega_k (Y_t^k - Y_0^k) =: \hat{B}_t^H \\ & -\int_0^\infty \partial_\gamma \left(Y_t^\gamma - Y_0^\gamma\right) \nu_2(\gamma) \mathrm{d}\gamma \end{cases} \approx \sum_{k=1}^K \omega_k (Y_t^k - Y_0^k) =: \hat{B}_t^H.$$



#### Forward Dynamics





Gabriel Nobis

#### Forward Dynamics



$$X_t | x_0 = c(t) \left( x_0 + \int_0^t \alpha(t, s) \mathrm{d}B_s \right) \sim \mathcal{N}(c(t)x_0, c^2(t)\sigma^2(t))$$



Gabriel Nobis

#### A Diffusion Model Driven by MA-fBM - The Reverse Process



 $\nabla_{\mathbf{z}} \log p_t(\mathbf{Z}_t) = \dots?$ 



We propose *augmented score matching* to train the score model  $s_{\theta}$ :

$$\mathcal{L}(\boldsymbol{\theta}) := \mathbb{E}_t \left\{ \mathbb{E}_{(\mathbf{X}_0, \mathbf{Y}_t^{[K]})} \mathbb{E}_{(\mathbf{X}_t | \mathbf{Y}_t^{[K]}, \mathbf{X}_0)} \left[ \| s_{\boldsymbol{\theta}}(\mathbf{X}_t - \sum_k \eta_t^k \mathbf{Y}_t^k, t) - \nabla_{\mathbf{x}} \log p_{0t}(\mathbf{X}_t | \mathbf{Y}_t^{[K]}, \mathbf{X}_0) \|_2^2 \right] \right\}.$$



We propose *augmented score matching* to train the score model  $s_{\theta}$ :

$$\mathcal{L}(\boldsymbol{\theta}) := \mathbb{E}_t \left\{ \mathbb{E}_{(\mathbf{X}_0, \mathbf{Y}_t^{[K]})} \mathbb{E}_{(\mathbf{X}_t | \mathbf{Y}_t^{[K]}, \mathbf{X}_0)} \left[ \| s_{\boldsymbol{\theta}}(\mathbf{X}_t - \sum_k \eta_t^k \mathbf{Y}_t^k, t) - \nabla_{\mathbf{x}} \log p_{0t}(\mathbf{X}_t | \mathbf{Y}_t^{[K]}, \mathbf{X}_0) \|_2^2 \right] \right\}.$$

Assume that  $s_{\theta}$  is optimal w.r.t. the augmented score matching loss  $\mathcal{L}$  in (12). The score model

$$S_{\theta}(\mathbf{Z}_t, t) := \left(s_{\theta}(\mathbf{X}_t - \sum_k \eta_t^k \mathbf{Y}_t^k, t), -\eta_t^1 s_{\theta}(\mathbf{X}_t - \sum_k \eta_t^k \mathbf{Y}_t^k, t), ..., -\eta_t^K s_{\theta}(\mathbf{X}_t - \sum_k \eta \mathbf{Y}_t^k, t)\right)$$

yields the optimal  $L^2(\mathbb{P})$  approximation of  $\nabla_{\mathbf{z}} \log p_t(\mathbf{Z}_t)$ .



#### A Score-based Model Driven by MA-fBM - The Reverse Process



Known guiding score function

$$\nabla_{\mathbf{z}} \log p_t(\mathbf{Z}_t) \approx S_{\boldsymbol{\theta}}(\mathbf{Z}_t, t) + \nabla_{\mathbf{z}} \log q_t(\mathbf{Y}_t^{[K]}), \quad \mathbf{Y}_t^{[K]} := (Y_t^1, ..., Y_t^K)$$



# **Results: Different Hurst Indices**

| MNIST               | $\mathrm{FID}\downarrow$ | $\mathrm{VS}_p$ $\uparrow$ |  |  |  |  |  |
|---------------------|--------------------------|----------------------------|--|--|--|--|--|
| BM driven           |                          |                            |  |  |  |  |  |
| VE (retrained       | 10.82                    | 24.20                      |  |  |  |  |  |
| VP (retrained)      | 1.44                     | 23.64                      |  |  |  |  |  |
| MA-fBM driven       |                          |                            |  |  |  |  |  |
| FVP(H = 0.9, K = 3) | 0.72                     | 24.18                      |  |  |  |  |  |
| FVP(H = 0.7, K = 3) | 0.86                     | 24.39                      |  |  |  |  |  |
| FVP(H = 0.9, K = 4) | 1.22                     | 24.76                      |  |  |  |  |  |

| CIFAR10                                                           | $FID\downarrow$             | $\mathrm{VS}_p$ $\uparrow$  |
|-------------------------------------------------------------------|-----------------------------|-----------------------------|
| BM driven                                                         |                             |                             |
| VE (retrained)<br>VP (retrained)                                  | $5.20 \\ 4.85$              | $3.42 \\ 3.28$              |
| MA-fBM driven                                                     |                             |                             |
| FVP(H = 0.9, K = 1)<br>FVP(H = 0.7, K = 2)<br>FVP(H = 0.9, K = 2) | 4.79<br>4.17<br><b>3.77</b> | 3.53<br>3.35<br><b>3.60</b> |

Conditional image generation on (LHS) MNIST and (RHS) CIFAR10.



#### Results: Number of Function Evaluations (NFEs)



Averaged FID on CIFAR10 over three rounds of sampling plotted across different NFEs.



#### Results: Class-wise performance

| Metric   | Dynamics            | airplane | automobile | bird   | cat    | deer   | dog    | frog   | horse  | ship   | truck  |
|----------|---------------------|----------|------------|--------|--------|--------|--------|--------|--------|--------|--------|
| FID ↓    | VP                  | 15.29    | 12.06      | 14.08  | 18.08  | 10.68  | 16.92  | 16.48  | 12.49  | 10.74  | 10.57  |
|          | FVP(H = 0.7, K = 2) | 14.67    | 9.55       | 14.02  | 16.97  | 11.05  | 17.14  | 16.43  | 10.97  | 9.91   | 8.81   |
|          | FVP(H=0.9, K=2)     | 14.37    | 8.94       | 14.18  | 16.38  | 10.52  | 16.76  | 15.37  | 10.28  | 10.04  | 8.76   |
| Recall ↑ | VP                  | 0.6814   | 0.6186     | 0.6860 | 0.6466 | 0.7002 | 0.6730 | 0.6758 | 0.6392 | 0.6468 | 0.5982 |
|          | FVP(H = 0.7K = 2)   | 0.6838   | 0.6436     | 0.6870 | 0.6712 | 0.7140 | 0.6844 | 0.6922 | 0.6764 | 0.6550 | 0.6508 |
|          | FVP(H=0.9, K=2)     | 0.7038   | 0.6614     | 0.7188 | 0.6842 | 0.7284 | 0.7096 | 0.7104 | 0.6806 | 0.6772 | 0.6852 |

Class-wise image quality and class-wise distribution coverage on CIFAR10.



#### Conclusion

- We propose to use MA-fBM as the driving noise process for your diffusion models
- A score model that matches the dimensionality of the data suffices
- We achieve higher image quality, improved pixel-wise diversity and better distribution coverage





Gabriel Nobis



gabriel\_\_nobis





Gabriel Nobis