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Warm-up: (Non-Private) Binary Classification
PAC Model [Valiant84]
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Differential Privacy 
[DN03, DMNS06]
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D and D’ are neighbors if they differ by at most one row

Definition: A (randomized) algorithm A is (ε, δ)-differentially private
if for all neighbors D, D’ and every S ⊆ Range(A)

A private algorithm needs to have close output 
distributions on any pair of neighbors

Pr[A(D) ∈ S] ≤ eε Pr[A(D’) ∈ S]  + δ



Private Binary Classification
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Differentially Private PAC Model
[Kasiviswanathan-Lee-Raskhodnikova-Nissim-Smith08]



But…

• Statistical Feasibility:

• Littlestone dimension is a pessimistic worst-case measure

• Rules out simple functions (e.g., thresholds, half-spaces)

• Does not reflect recent empirical advances in DP ML 

Can we leverage external information to sidestep Littlestone dimension lower bound?



Private Learning with Unlabeled Public Data
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[Beimel-Nissim-Stemmer’14, Alon-Bassily-Moran’19…]

Unlabeled Public Data:  
 (by some -divergence)Ppub ≈ PX f

Analogous to smooth 
online learning

[Rakhlin-Sridharan-Tewari’11,  

Haghtalab-Roughgarden-Shetty’20, 

Haghtalab-Han-Shetty-Yang’22,  

Block-Simchowitz’22,  

Block-Simchowitz-Rakhlin’23…]



Formulation of Computational Efficiency

Oracle Efficiency:

Assume access to an oracle that can solve 
(non-private) empirical risk minimization 

problem of the form:

Solve the private learning problem efficiently 
(in polynomial time)

arg min
h∈C

n

∑
i=1

ℓ(h(xi), yi)
{Abstraction for powerful 

solvers for non-convex 
optimization (e.g., SGD, 

integer program solvers…)

Prime oracle-efficient in online learning:
Follow-the-perturbed-leader (FTPL)

[Kalai-Vempala’02]



DP Oracle-Efficient Learner with Unlabeled Public Data
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Beyond Classification: 
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Summary

• Designed algorithms based on FTPL, FTRL from online learning 
that ensure stability to get private learning algorithms.

• Improved previous set of results by giving

• Oracle efficient algorithms for more general function classes

• Using public unlabelled data as opposed to public labelled 
data

• Minimizing number of calls to the oracle

• First to design learning algorithms for real valued functions.


