Efficiently Learning Significant Fourier Feature Pairs for Statistical Independence Testing

Yixin Ren¹, Yewei Xia^{1,4}, Hao Zhang³, Jihong Guan², Shuigeng Zhou¹

¹Fudan University, ²Tongji University, ³SIAT, ⁴MBZUAI

Statistical Independence Testing

whether $\mathbb{P}_{XY} = \mathbb{P}_X \mathbb{P}_Y$?

Statistical Independence Testing

whether
$$\mathbb{P}_{XY} = \mathbb{P}_X \mathbb{P}_Y$$
 ?

Hypothesis testing

- Null hypothesis \mathcal{H}_0 : $\mathbb{P}_{XY} = \mathbb{P}_X \mathbb{P}_Y$.
- Alternative hypothesis \mathcal{H}_1 : $\mathbb{P}_{XY} \neq \mathbb{P}_X \mathbb{P}_Y$.

Given *n* i.i.d samples $Z := \{(x_i, y_i)\}_{i=1}^n$

Kernel-based Statistical Independence Testing

Definition (Hilbert-Schmidt Independence Criterion)

Let \mathcal{F} be an RKHS with kernel $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ and let \mathcal{G} be a second RKHS on \mathcal{Y} with kernel $I : \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}$, the HSIC between X and Y, denoted as HSIC(X, Y) is defined as

 $\mathsf{E}[k(X,X')/(Y,Y')] + \mathsf{E}[k(X,X')] \mathsf{E}[l(Y,Y')] - 2\mathsf{E}_{X'Y'}[\mathsf{E}_X k(X,X')\mathsf{E}_Y l(Y,Y')],$

where (X', Y') is a independent copy of (X, Y).

Kernel-based Statistical Independence Testing

Definition (Hilbert-Schmidt Independence Criterion)

Let \mathcal{F} be an RKHS with kernel $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ and let \mathcal{G} be a second RKHS on \mathcal{Y} with kernel $I : \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}$, the HSIC between X and Y, denoted as HSIC(X, Y) is defined as

 $\mathsf{E}[k(X,X')I(Y,Y')] + \mathsf{E}[k(X,X')]\mathsf{E}[I(Y,Y')] - 2\mathsf{E}_{X'Y'}[\mathsf{E}_Xk(X,X')\mathsf{E}_YI(Y,Y')],$

where (X', Y') is a independent copy of (X, Y).

• $HSIC(X, Y) = 0 \Leftrightarrow \mathbb{P}_{XY} = \mathbb{P}_X \mathbb{P}_Y$ with suitable kernels (e.g. Gaussian kernel).

Examples (Gaussian kernel with width σ)

The Gaussian kernel is defined as $k(x, x') := \exp(-\frac{\|x-x'\|^2}{2\sigma^2})$, where σ is the width.

Kernel-based Statistical Independence Testing

Definition (Estimation of HSIC)

An estimator of HSIC(X, Y) with sample Z is given by

$$\mathsf{HSIC}_{b}(Z) := \frac{1}{n^{2}} \sum_{i,j} k_{ij} l_{ij} + \frac{1}{n^{4}} \sum_{i,j,q,r} k_{ij} l_{qr} - 2 \frac{1}{n^{3}} \sum_{i,j,q} k_{ij} l_{iq} = \frac{1}{n^{2}} \mathsf{Tr}(\mathsf{KHLH}),$$

where $k_{ij} := k(x_i, x_j)$, $l_{ij} := l(y_i, y_j)$ are the entries of the $n \times n$ kernel matrix **K**, **L**, respectively and $\mathbf{H} = \mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^T$ is the center matrix and $\mathbf{1}$ is a vector of ones.

$$\mathbf{K}_{n \times n} = \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1n} \\ k_{21} & k_{22} & \cdots & k_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ k_{n1} & k_{n2} & \cdots & k_{nn} \end{bmatrix}$$

Calculate $HSIC_b(Z)$ cost $\mathcal{O}(n^2)$ time and $\mathcal{O}(n^2)$ space. *n*: sample size.

What's More?

$$\mathsf{HSIC}_{b}(Z) := \frac{1}{n^{2}} \sum_{i,j} k_{ij} l_{ij} + \frac{1}{n^{4}} \sum_{i,j,q,r} k_{ij} l_{qr} - 2 \frac{1}{n^{3}} \sum_{i,j,q} k_{ij} l_{iq} = \frac{1}{n^{2}} \mathsf{Tr}(\mathsf{KHLH}),$$

 Faster: The time/space computational complexity of current statistic are both quadratic computing time.

• More flexible: The kernel can not be adaptive.

What's More?

$$\mathsf{HSIC}_{b}(Z) := \frac{1}{n^{2}} \sum_{i,j} k_{ij} l_{ij} + \frac{1}{n^{4}} \sum_{i,j,q,r} k_{ij} l_{qr} - 2 \frac{1}{n^{3}} \sum_{i,j,q} k_{ij} l_{iq} = \frac{1}{n^{2}} \mathsf{Tr}(\mathsf{KHLH}),$$

• Faster: The time/space computational complexity of current statistic are both quadratic computing time.

• More flexible: The kernel can not be adaptive.

A Frequency Domain Perspective

$$\mathrm{HSIC}(X,Y) = \int_{\mathbb{R}^{d_X} \times \mathbb{R}^{d_y}} \left| \phi_{\mathbb{P}_{XY}}(\omega) - \phi_{\mathbb{P}_X \mathbb{P}_Y}(\omega) \right|^2 (\mathcal{F}^{-1}\psi)(\omega) d\omega,$$

Example: $(X, Y) \sim p_{xy}(x, y) \propto 1 + \sin(\omega_0 x) \sin(\omega_0 y)$.

We aim to obtain a more flexible $(\mathcal{F}^{-1}\psi)(\omega)$

A Frequency Domain Perspective

Enable more efficient calculation of statistic

• The statistic

$$\mathsf{HSIC}(X,Y) = \int_{\mathbb{R}^{d_X} \times \mathbb{R}^{d_y}} \left| \phi_{\mathbb{P}_{XY}}(\omega) - \phi_{\mathbb{P}_X \mathbb{P}_Y}(\omega) \right|^2 (\mathcal{F}^{-1}\psi)(\omega) d\omega.$$

• Frequency samplings for integral approximation

Sampling

$$\mathsf{HSIC}_{\omega}(X,Y) := \frac{1}{D_{X}D_{y}} \sum_{i=1}^{D_{x}} \sum_{j=1}^{D_{y}} |\phi_{\mathbb{P}_{XY}}(\omega_{x;i},\omega_{y;j}) - \phi_{\mathbb{P}_{X}\mathbb{P}_{Y}}(\omega_{x;i},\omega_{y;j})|^{2},$$

where $\{\omega_{x;i}\}_{i=1}^{D_x}, \{\omega_{y;j}\}_{j=1}^{D_y}$ are sampled independently with the measure $\mathcal{F}^{-1}\psi_k, \mathcal{F}^{-1}\psi_l$, respectively. And $\mathcal{F}^{-1}\psi$ is a product measure, i.e., $\mathcal{F}^{-1}\psi = (\mathcal{F}^{-1}\psi_k) \otimes (\mathcal{F}^{-1}\psi_l)$. This type of approximation also called random Fourier features (RFF).

Obtain Independence Criterion

Design $\mathcal{F}^{-1}\psi$ (take $\mathcal{F}^{-1}\psi_k(\omega)$ for example)

• Designing by kernels with adjustable parameters.

Kernel	$\psi_k(\Delta)$	$\mathcal{F}^{-1}\psi_k(\omega)$	$\mathcal{T}_{\theta_k}(x)$	$p_k(\omega)$
Gaussian	$e^{-\frac{\ \Delta\ _2^2}{2\sigma^2}}$	$(2\pi)^{-d_x/2}\sigma e^{-\sigma^2\ \omega\ _2^2/2}$	x/σ	$(2\pi)^{-d_x/2}e^{-\ \omega\ _2^2/2}$
Laplace	$e^{-\frac{\ \Delta\ _1}{\sigma}}$	$\sqrt{\frac{2}{\pi}} \prod_d \frac{\sigma}{\sigma^2 + \omega_d^2}$	x/σ	$\sqrt{\frac{2}{\pi}} \prod_d \frac{1}{1+\omega_d^2}$
Mahalanobis	$e^{-\frac{1}{2}\Delta^T\Sigma^{-1}\Delta}$	$(2\pi)^{-d_{x}/2} \Sigma ^{-1/2}e^{-\omega^{T}\Sigma^{-1}\omega/2}$	$\Sigma^{1/2}x$	$(2\pi)^{-d_x/2}e^{-\ \omega\ _2^2/2}$

Table: Some popular kernels (parametered σ, Σ) with corresponding density functions.

Obtain Independence Criterion

Design $\mathcal{F}^{-1}\psi$ (take $\mathcal{F}^{-1}\psi_k(\omega)$ for example)

• Designing by kernels with adjustable parameters.

Kernel	$\psi_k(\Delta)$	$\mathcal{F}^{-1}\psi_k(\omega)$	$\mathcal{T}_{\theta_k}(x)$	$p_k(\omega)$
Gaussian	$e^{-\frac{\ \Delta\ _2^2}{2\sigma^2}}$	$(2\pi)^{-d_x/2}\sigma e^{-\sigma^2\ \omega\ _2^2/2}$	x/σ	$(2\pi)^{-d_{x}/2}e^{-\ \omega\ _{2}^{2}/2}$
Laplace	$e^{-\frac{\ \Delta\ _1}{\sigma}}$	$\sqrt{\frac{2}{\pi}} \prod_d \frac{\sigma}{\sigma^2 + \omega_d^2}$	x/σ	$\sqrt{\frac{2}{\pi}} \prod_d \frac{1}{1+\omega_d^2}$
Mahalanobis	$e^{-rac{1}{2}\Delta^T\Sigma^{-1}\Delta}$	$(2\pi)^{-d_{x}/2} \Sigma ^{-1/2}e^{-\omega^{T}\Sigma^{-1}\omega/2}$	$\Sigma^{1/2}x$	$(2\pi)^{-d_x/2}e^{-\ \omega\ _2^2/2}$

Table: Some popular kernels (parametered σ , Σ) with corresponding density functions.

- Disentangling the sampled objects and the learnable parameters
 - Relocate the learnable component onto X using $\mathcal{T}_{\theta_k}(x)$.
 - Convert the probability measure $\mathcal{F}^{-1}\psi_k$ into a standard distribution $p_k(\omega)$.

Obtain Independence Criterion

Learnable RFF

We obtain the approximation of kernel

• Kernel with learnable mappings

$$\psi_k\left(\mathcal{T}_{\theta_k}x-\mathcal{T}_{\theta_k}x'\right)=\mathcal{F}[\mathcal{F}^{-1}\psi_k(\omega)]=\int e^{-i\omega^T(\mathcal{T}_{\theta_k}x-\mathcal{T}_{\theta_k}x')}p_k(\omega)d\omega.$$

• Use the frequency sampling technique

$$\psi_k^{(\omega)}\left(\mathcal{T}_{\theta_k}x - \mathcal{T}_{\theta_k}x'\right) := \frac{2}{D}\sum_{j=1}^{D/2} e^{-i\omega_{k;j}^T(\mathcal{T}_{\theta_k}x - \mathcal{T}_{\theta_k}x')} = \frac{2}{D}\sum_{j=1}^{D/2} \cos\left(\omega_{k;j}^T(\mathcal{T}_{\theta_k}x - \mathcal{T}_{\theta_k}x')\right),$$

where $\{\omega_{k;j}\}_{j=1}^{D/2}$ are sampled independently with distribution $p_k(\omega)$. • The learnable RFF of k

$$\Lambda_{k}(x) := \sqrt{\frac{2}{D}} \left[\cos(\omega_{1}^{T} \mathcal{T}_{\theta_{k}} x), \sin(\omega_{1}^{T} \mathcal{T}_{\theta_{k}} x), ..., \cos(\omega_{D/2}^{T} \mathcal{T}_{\theta_{k}} x), \sin(\omega_{D/2}^{T} \mathcal{T}_{\theta_{k}} x) \right],$$

• Hence $\psi_{k}^{(\omega)} \left(\mathcal{T}_{\theta_{k}} x - \mathcal{T}_{\theta_{k}} x' \right) = \Lambda_{k}(x) \Lambda_{k}(x')^{T}.$

Independence Criterion

The statistic can be obtained as follows.

- The learnable RFF of samples in matrix form $\Lambda_X := [\Lambda_k(x_1); ...; \Lambda_k(x_n)]_{n \times D}$.
- Obtain Λ_Y by analogy. The same number of samplings are used for simplify.
- The statistic with sample Z

$$\mathsf{HSIC}_{\omega}(Z) := \frac{1}{n^2} \mathsf{Tr}(\mathbf{\Lambda}_X \mathbf{\Lambda}_X^T \mathbf{H} \mathbf{\Lambda}_Y \mathbf{\Lambda}_Y^T \mathbf{H}) = \frac{1}{n^2} \mathsf{Tr}(\mathbf{\Lambda}_X^T \mathbf{H} \mathbf{\Lambda}_Y \mathbf{\Lambda}_Y^T \mathbf{H} \mathbf{\Lambda}_X) = \frac{1}{n^2} \|\mathbf{\Lambda}_{Xc}^T \mathbf{\Lambda}_{Yc}\|_F^2,$$

where $\Lambda_{Xc} := H\Lambda_X, \Lambda_{Yc} := H\Lambda_Y$.

• The time complexity is $O(nD(d_x + d_y + D))$, i.e. the running time is linear with n.

Asymptotic Behavior

Proposition (Asymptotics)

Let $h_{ijqr}^{(\omega)} := \frac{1}{4!} \sum_{\substack{(t,u,v,w) \ (t,u,v,w)}}^{(i,j,q,r)} k_{tu}^{(\omega)} l_{tu}^{(\omega)} + k_{tu}^{(\omega)} l_{vw}^{(\omega)} - 2k_{uv}^{(\omega)} l_{tv}^{(\omega)}$. Then, Under the null hypothesis \mathcal{H}_0 , $HSIC_{\omega}(Z)$ coverages in distribution to

$$nHSIC_{\omega}(Z) \xrightarrow{d} \sum_{l=1}^{\infty} \lambda_{l}\chi_{1l}^{2}, \quad \lambda_{l}g_{l}(z_{j}) = \int_{z_{i}, z_{q}, z_{r}} h_{ijqr}^{(\omega)}g_{l}(z_{i})dF_{z_{i}, z_{q}, z_{r}},$$

where $\chi_{11}^2, \chi_{12}^2, ...$ are independent χ_1^2 variates and λ_l is the solution to eigenvalue problem. Also, under \mathcal{H}_1 , $HSIC_{\omega}(Z)$ converges in distribution as

$$n^{\frac{1}{2}} \Big(HSIC_{\omega}(Z) - \mathbf{E}_{Z} HSIC_{\omega}(Z) \Big) \xrightarrow{d} \mathcal{N}(0, \sigma_{\omega}^{2}), \ \sigma_{\omega}^{2} := 16 \Big[\mathbf{E}_{i} (\mathbf{E}_{j,q,r} h_{ijqr}^{(\omega)})^{2} - \big(\mathbf{E}_{Z} h_{ijqr}^{(\omega)} \big)^{2} \Big]$$

with the simplified notation $\mathbf{E}_{j,q,r} := \mathbf{E}_{z_j,z_q,z_r}$ and $\mathbf{E}_Z := \mathbf{E}_{z_i,z_j,z_q,z_r}$.

Construct Optimization Objective

According to the asymptotics, the power of the test

$$\mathbb{P}_{\mathcal{H}_1}(n\mathsf{HSIC}_{\omega}(Z) > r_{\omega}) \to \Phi\left(\frac{n\mathsf{E}_Z\mathsf{HSIC}_{\omega}(Z) - r_{\omega}}{\sqrt{n}\sigma_{\omega}}\right),$$

where Φ is the standard normal CDF.

The optimization objective

$$J := \frac{(n \mathsf{HSIC}_{\omega}(Z) - \widehat{c}_{\alpha})}{(\sqrt{n}\widehat{\sigma}_{\omega})},$$

where $\text{HSIC}_{\omega}(Z)$ is the criterion, \widehat{c}_{α} is a estimate of threshold and the estimate of variance $\widehat{\sigma}_{\omega}^2 := 16 \left[\frac{1}{n} \sum_i \left(\frac{1}{n^3} \sum_{j,q,r} h_{ijqr}^{(\omega)} \right)^2 - \text{HSIC}_{\omega}^2(Z) \right]$.

Obtain $\hat{c_{\alpha}}$ with Gamma approximation.

• Determined completely by the first two moments of distribution under \mathcal{H}_0 .

$$n\mathsf{HSIC}_{\omega}(Z) \sim \frac{x^{\gamma-1}e^{-x/\beta}}{\beta^{\gamma}\Gamma(\gamma)}, \text{ where } \gamma = \frac{(\mathsf{E}[\mathsf{HSIC}_{\omega}(Z)])^2}{\mathsf{var}[\mathsf{HSIC}_{\omega}(Z)]}, \beta = \frac{n\mathsf{Var}[\mathsf{HSIC}_{\omega}(Z)]}{\mathsf{E}[\mathsf{HSIC}_{\omega}(Z)]}$$

• The $(1 - \alpha)$ -quantile of Gamma distribution

$$\int_0^{\widehat{c_{\alpha}}} \frac{x^{\gamma-1} e^{-x/\beta}}{\beta^{\gamma} \Gamma(\gamma)} dx = 1 - \alpha.$$

Obtain $\widehat{c_{\alpha}}$ with Gamma approximation.

• Determined completely by the first two moments of distribution under \mathcal{H}_0 .

$$n\text{HSIC}_{\omega}(Z) \sim \frac{x^{\gamma-1}e^{-x/\beta}}{\beta^{\gamma}\Gamma(\gamma)}, \text{ where } \gamma = \frac{(\mathsf{E}[\text{HSIC}_{\omega}(Z)])^2}{\text{var}[\text{HSIC}_{\omega}(Z)]}, \beta = \frac{n\text{Var}[\text{HSIC}_{\omega}(Z)]}{\mathsf{E}[\text{HSIC}_{\omega}(Z)]}$$

• The $(1 - \alpha)$ -quantile of Gamma distribution

$$\int_0^{\widehat{c_{\alpha}}} \frac{x^{\gamma-1} e^{-x/\beta}}{\beta^{\gamma} \Gamma(\gamma)} dx = 1 - \alpha.$$

The linear-time estimations of two moments of distribution under \mathcal{H}_0 .

Theorem (Linear-Time Estimations)

Under \mathcal{H}_0 , the estimation of mean and variance with bias of $\mathcal{O}(n^{-1})$ to $\mathbf{E}_Z[nHSIC_{\omega}(Z)]$ and $\mathbf{Var}_Z[nHSIC_{\omega}(Z)]$, denote as \mathcal{E}_0 and \mathcal{V}_0 , respectively, are given by

$$\mathcal{E}_{0} := \frac{[\mathbf{1}^{T} \mathbf{\Lambda}_{X_{c}}^{\cdot 2} \mathbf{1}][\mathbf{1}^{T} \mathbf{\Lambda}_{Y_{c}}^{\cdot 2} \mathbf{1}]}{(n-1)^{2}}, \mathcal{V}_{0} := \frac{2n(n-4)(n-5)}{(n-1)(n-2)(n-3)} \frac{[\mathbf{1}^{T} (\mathbf{\Lambda}_{X_{c}}^{T} \mathbf{\Lambda}_{X_{c}})^{\cdot 2} \mathbf{1}][\mathbf{1}^{T} (\mathbf{\Lambda}_{Y_{c}}^{T} \mathbf{\Lambda}_{Y_{c}})^{\cdot 2} \mathbf{1}]}{n^{4}},$$

where ()² is the entrywise matrix power. Both \mathcal{E}_0 and \mathcal{V}_0 can be calculated in $\mathcal{O}(nD^2)$ time.

The estimate of variance $\widehat{\sigma}_{\omega}^2$ also can be calculated in linear-time

- By the definition $\widehat{\sigma}_{\omega}^2 := 16 \left[\frac{1}{n} \sum_i \left(\frac{1}{n^3} \sum_{j,q,r} h_{ijqr}^{(\omega)} \right)^2 \text{HSIC}_{\omega}^2(Z) \right].$
- Calculate $\sum_{j,q,r} h_{ijqr}^{(\omega)}$ in linear time

$$\sum_{j,q,r} h_{ijqr}^{(\omega)} = \frac{1}{2} \left[n \mathbf{1}^T \mathbf{A} \mathbf{1} + n^2 (\mathbf{A} \mathbf{1})_i + (\mathbf{1}^T \mathbf{C}) \mathbf{B}_i + (\mathbf{1}^T \mathbf{B}) \mathbf{C}_i - n \mathbf{E}_i - n \mathbf{F}_i - n \mathbf{D}_i - \mathbf{1}^T \mathbf{D} \right],$$

$$\begin{bmatrix} \mathbf{\Lambda}_X^T \mathbf{\Lambda}_Y]_{D \times D} \longrightarrow \begin{bmatrix} (\mathbf{\Lambda}_X^T \mathbf{\Lambda}_Y) \mathbf{\Lambda}_Y^T]_{D \times n} \end{bmatrix} \longrightarrow \mathbf{A} := \begin{bmatrix} \mathbf{\Lambda}_X \odot (\mathbf{\Lambda}_X^T \mathbf{\Lambda}_Y \mathbf{\Lambda}_Y^T)^T]_{n \times D} \end{bmatrix} \longrightarrow \mathbf{D} := \begin{bmatrix} \mathbf{B} \odot \mathbf{C} \end{bmatrix}_{n \times 1} \qquad \text{Time Complexity:} \qquad \underbrace{\mathcal{O}(nD^2)}_{\mathcal{O}(nD)} \\ \begin{bmatrix} \mathbf{\Lambda}_X^T \mathbf{1} \end{bmatrix}_{D \times 1}, \begin{bmatrix} \mathbf{\Lambda}_Y^T \mathbf{1} \end{bmatrix}_{D \times 1} \end{bmatrix} \longrightarrow \mathbf{B} := \begin{bmatrix} \mathbf{\Lambda}_X (\mathbf{\Lambda}_X^T \mathbf{1}) \end{bmatrix}_{n \times 1}, \mathbf{C} := \begin{bmatrix} \mathbf{\Lambda}_Y (\mathbf{\Lambda}_Y^T \mathbf{1}) \end{bmatrix}_{n \times 1} \end{bmatrix} \longrightarrow \mathbf{B} := \begin{bmatrix} \mathbf{\Lambda}_X (\mathbf{\Lambda}_X^T \mathbf{1}) \end{bmatrix}_{n \times 1}, \mathbf{C} := \begin{bmatrix} \mathbf{\Lambda}_Y (\mathbf{\Lambda}_Y^T \mathbf{1}) \end{bmatrix}_{n \times 1} \end{pmatrix} \xrightarrow{\mathbf{C}} \mathbf{B} := \begin{bmatrix} \mathbf{\Lambda}_X (\mathbf{\Lambda}_X^T \mathbf{1}) \end{bmatrix}_{n \times 1}$$

As a result, the optimization objective can be computed in linear time.

Experiments

Results on 3DShape (High-dimensional) and Real Datasets

Figure: The results on two real data. Left: 3DShapes. Right two: MSD Dataset.

- Flexible: handle large scale/highdimensional settings well.
- Fast: linear-time time/space computation complexity.

The method achieves flexible independence testing in linear time (w.r.t sample size).

Flexible: The kernel can be *adaptive*.
 Fast: *linear-time time/space* complexity.

Thank you for you attention!