

1. Motivation: Ubiquitious Self-play in LLM

• Self-interaction among LLM agents gains popularity

Multi-gen RL [1], etc

[1] Gulcehre, Caglar, et al. "Reinforced self-training (ReST) for language modeling." arXiv 2023.

2] Yuan, Weizhe, et al. "Self-rewarding language models." arXiv preprint arXiv 2024

communication

[3] Madaan, Aman, et al. "Self-refine: Iterative refinement with self-feedback." NeurIPS 2023

[4] Wang, Yizhong, et al. "Self-Instruct: Aligning Language Models with Self-Generated Instructions." ACL 2023

[5] Gou, Zhibin, et al. "CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing." ICLR 2024

4. LLM Verification – Explicit *h*

Self-reflection [5], etc

A — ON B → OFF • To verify the **subtle trends** C 🔶 UND $\rightarrow \bigcirc$ ⊐ авс → ```Д`-` В predicted by the theory, a c → Ò́. Gen2 в 🗕 🎧 start from Abstract Causal B C → UND C → UND Gen1 REasoning <u>ACRE</u>, used in [1] . Interaction phase Your rule cannot explain Feedback (world or LLM) $(A \rightarrow UND)$ авс → "Ѽ҉ B → OFF C → UND Please refine it. • Consider 5 objects, then $3^5 = 243$ possible h10⁰ · Gen=1 10-3 ---- GPT3.5, $\tau = 0.1$ 1.75 — GPT3.5, τ=0.5 10-6 1.50 ------ GPT3.5, τ=1.0 10⁻⁹ $---- GPT4, \tau = 1.0$ <u><u><u></u></u> 1.25</u> 1.00 · Gen=6 0.75 10-3 off und 0.50 10-6 0.25 10- 10^{-1} 0.00 ⊥ 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 100 150 200 Index of 243 h Generation Verify solution: $h^{T*} = \operatorname{argmax}_{h \in \mathcal{H}_{eff}} P_0(h)$ Verify convergence: $P(\mathbf{h}|\mathbf{d}^t) \rightarrow \mathbb{I}(h = h^{T*})$

[1] Qiu, Linlu, et al. "Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement." ICLR-2024

Bias Amplifiction in LLM Evolution: An Iterated Learning Perspective

Yi Ren¹, Shangmin Guo², Linlu Qiu³, Bailin Wang³, Danica J. Sutherland^{1,4}

1. UBC; 2. University of Edinburgh; 3. MIT; 4. Amii

2. Similarity to Human Language's Evolution

- Although proposed by different reasons, they are similar in:
 - > Imitation: Another agent learn from the message generated by previous agent
 - > Interaction: LLM interact with other or environment to refine the knowledge
 - > Transmission: LLM generate message based on given prompts
 - Repeat the process for several rounds Alice[t-1] ??? Gen N
- But, keeps self-boosting introduce RISKs of
 - Diversity decrease
 - > Mode collapse
 - ➤ Harmful bias amplification

Although reported in many related works sporadicly, no unified framework to analyze the asymptotic behavior.

5. LLM Verification – Implicit *h*

• Consider a more practical self-data augmentation problem, where **h** is implicit, e.g.,

 $h = \{\text{Long response, Short response}\}; h = \{\text{Use easy words, Use hard words}\}$

• A simple "creative writting"-style game, brainstorming the given acronym

• LLM naturally bias towards common & short words. Manipulate it using different \mathcal{H}_{eff}

Table 2: Results when adding different \mathcal{H}_{eff} . We color the highest and lowest numbers in each column. N_e is the number of easy examples in **d**⁰. Results under different settings are in Table 4 and 5.

												B B B				
$N_e =$	2	4	6	8	10	2	4	6	8	10	2	4	6	8	10	
Random	0.913±0.01	0.600 ± 0.08	0.963±0.00	0.887±0.03	0.825±0.06	13519	27269	7487	10425	15871	5.425±1.04	4.825±0.33	5.600±1.55	5.014±1.50	4.713±0.63	
Imitation-only	0.438±0.20	0.935±0.01	0.925±0.00	0.975±0.00	0.963±0.00	35235	7497	9081	5549	8075	4.450±0.86	4.387±1.40	4.175±0.13	4.188±0.65	5.438±1.24	
Hard	0.219 ± 0.19	0.250 ± 0.43	0.450 ± 0.43	0.338±0.16	0.500 ± 0.23	49869	46436	37288	41255	31903	4.630±1.54	5.788±1.39	4.675±0.40	4.388±0.60	5.200±0.42	
Easy	0.763±0.17	1.000 ± 0.00	0.988 ± 0.00	1.000 ± 0.00	0.990 ± 0.00	15910	3156	2383	2924	2650	3.925±0.33	5.263±0.06	4.713±0.06	4.240±0.08	4.893±0.71	
Easylong	0.988±0.00	0.975±0.00	0.988 ± 0.00	0.988 ± 0.00	1.000 ± 0.00	7063	9413	8649	6898	7404	5.209±0.41	5.888 ± 0.52	6.838±1.10	6.979±1.57	7.695±1.70	
Easyshort	1.000 ± 0.00	1.000 ± 0.00	0.975 ± 0.00	1.000 ± 0.00	0.988 ± 0.00	5671	4223	5733	4502	5251	3.975 ± 0.50	4.012 ± 1.03	4.374 ± 0.50	3.950 ± 0.03	4.250 ± 0.24	

3. Bayesian Iterated Learning

Key assumption to LLM: ICL is implicit Bayesian Inference [2]

[1] Griffiths, Thomas L et.al. "Using category structures to test iterated learning as a method for identifying inductive biases." Cognitive Science 2008. [2] Xie, Sang Michael, et al. "An Explanation of In-context Learning as Implicit Bavesian Inference." ICLR-2022

6. Take-away Message

- Applying Bayesian-IL to LLM's evolution:
 - Bias in $P_0(h)$ is guaranteed to be <u>amplified</u> if self-boosting <u>too much</u>
 - Bias can be **beneficial or harmful**, **h** can be explicit or implicit
- 3. Figure out the bias, understand it, and then design corresponding \mathcal{H}_{eff}

• Iterated learning and $P_0(h)$ in other fields:

[1] CogSci: human prefer compositionality \rightarrow compositional language is achieved after IL [2] EmCom: simple NN prefer compositionality \rightarrow compositional mapping is achieved after IL [3] Representation Learning: complex NN prefer systematicness \rightarrow systematical generalization [4] VLM: language prefer compositionality \rightarrow vision modual also becomes compositional after IL

• In-weights updates (e.g., DPO) amplify the bias in $P_0(h)$ more [5] Analysis of the "squeezing effect" caused by negative gradient part in DPO

- [2] Ren, Yi, et al. "Compositional languages emerge in a neural iterated learning model." ICLR 2020
- [3] Ren, Yi, et al. "Improving compositional generalization using iterated learning and simplicial embeddings." NeurIPS 2023
- [4] Zheng, Chenhao, et al. "Iterated learning improves compositionality in large vision-language models." CVPR 2024 [5] Ren, Yi, et. al. "Learning Dynamics of LLM Finetuning", Submitted to ICLR 2025

^[1] Kirby, Simon, et.al. "Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language." PNAS 2008