

Contracting with a Learning Agent

Yoav Kolumbus, NeurIPS 2024

Joint work with G. Guruganesh, J. Schneider, I. Talgam-Cohen, EV. Vlatakis-Gkaragkounis, JR. Wang, SM. Weinberg

Yoav Kolumbus, 2024

Principals, Agents, and Contract

- Agent performs a task/service for the principal
- Agent selects among costly actions
- Principal aims to **incentivize "good" actions** (with high reward)

Example: I'll pay you an α part of the reward (linear contract)

Contracting with a Learning Agent

- Interaction is repeated
- Agent is learning (responds to past experience)

Example: outcomes are success/failure

- **Best static contract**: paying $\alpha = 2/3$ of reward to agent is optimal (or 1/3) •
- Principal (net) utility: 1/3

and costs

Agent (net) utility: 1/6

Actions	"Failure"	"Success"
$a_1: (c_1 = 0/6)$	1	0
$a_2: (c_2 = 1/6)$	1/2	1/2
$a_3: (c_3 = 3/6)$	0	1

Expected

principal rewards

Example: Now with a Learning Agent

• Agent is a mean-based no-regret learner

Agent actions

and costs

- Best dynamic contract: pay $\alpha_t = 2/3$ untill T/2, then pay zero until T
- Agent's response is a "free fall" through the actions:
 - plays a_3 (high effort) until T/2, then plays a_2 (low effort) until T
- Principal utility is now higher, 5/12. Agent utility is zero.

Actions	"Failure"	"Success"
$a_1: (c_1 = 0/6)$	1	0
$a_2: (c_2 = 1/6)$	1/2	1/2
$a_3: (c_3 = 3/6)$	0	1

Expected

principal rewards

Results Roadmap

With mean-based learners:

- Principals would prefer to use dynamic contracts
- "Free-fall" contracts are optimal dynamic linear contracts (Theorem 3.1)
 - Use a fixed contract until some time T^* , then switch to pay zero.
 - Can be computed efficiently
- Extends to general linearly-scaled contracts (Theorem D.1)
- Optimal dynamic contracts may have win-win outcomes (Theorem 3.2)

With no-swap regret learners:

• Best static contract is optimal (observation I.2)

<u>Uncertainty about the time horizon:</u>

• Principal added gains from being dynamic degrade as uncertainty increases (Thm. 4.2-4.3)

Summary notes

Contracting with a Learning Agent

- Results can be **very different** with **learning agents**
- Principals benefit from using simple dynamic contracts
- The learning agent can be worse off or better off
- A rich setting, many open questions:
 - Algorithmic, game-theoretic, and computational

yoav.kolumbus@cornell.edu