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Information-theoretic Reinforcement Learning
Reinforcement Learning: 
• pivotal technique for addressing sequential decision-making problems
• balance between exploration and exploitation
Information-theoretic Exploration:

• maximum entropy framework
• tendency to bias exploration towards low-value states
• value-conditional state entropy
Representation Learning:

• information bottleneck principle
Critical Limitation:

• existing approaches overlook the inherent structure within state and action spaces

Background
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Motivation
Markov Decision Process:
• six states and four actions
• optimizing the return to the initial state 
Traditional Exploration Policy:

• maximizing state-action Shannon entropy
• encompassing all possible transitions in blue color
Policy Incorporating Inherent State-action Structure:
• dividing redundant transitions into a low-value sub-community
• minimizing entropy for this state-action sub-community
• maximizing entropy for all state-action transitions
• maximal coverage for crucial transitions in red color

Background
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Structural Information Principles
Encoding Tree:
• dynamic uncertainty within complex graphs 
• hierarchical partitioning tree for all vertices
Structural Entropy:

• single-step random walk between vertices
• minimum number of bits required to encode an accessible vertex
However:
• definition limited to single-variable graph
• difficulty to measure structural relationship between multiple variables 
• independent modeling for state or action variables in RL

Background
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• undirected bipartite graph for joint distribution of two variables

• 2-layer approximate binary encoding tree

• l-transformation on the optimal encoding tree

• structural mutual information

Background Methodology

Structural Mutual Information
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Background Methodology

The Proposed SI2E Framework
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Stage 1: State-action Representation Learning 

• Structural Mutual Information Principle: building on the Information Bottleneck (IB), present an 

embedding principle that aims to minimize 𝐼𝐼𝑆𝑆𝑆𝑆 𝑍𝑍𝑡𝑡; 𝑆𝑆𝑡𝑡 while maximizing 𝐼𝐼𝑆𝑆𝑆𝑆 𝑍𝑍𝑡𝑡; 𝑆𝑆𝑡𝑡+1 .

• Representation Learning Objective: due to the computational challenges of direct optimization, 

equate the minimization of 𝐼𝐼𝑆𝑆𝑆𝑆 𝑍𝑍𝑡𝑡; 𝑆𝑆𝑡𝑡 to the minimization of 𝐼𝐼 𝑍𝑍𝑡𝑡; 𝑆𝑆𝑡𝑡 and 𝐻𝐻 𝑍𝑍𝑡𝑡|𝑆𝑆𝑡𝑡 , and equate the 

maximization of 𝐼𝐼𝑆𝑆𝑆𝑆 𝑍𝑍𝑡𝑡; 𝑆𝑆𝑡𝑡+1 to the maximization of 𝐼𝐼 𝑍𝑍𝑡𝑡; 𝑆𝑆𝑡𝑡+1 .

Background Methodology

The Proposed SI2E Framework
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Stage 2: Maximum Structural Entropy Exploration

• Hierarchical State-action Structure: derived from the history of agent-environment interactions, form 

a complete graph for all state-action pairs and minimize its 2-dimensional structural entropy to 

generate the hierarchical community structure

• Value-conditional Structural Entropy: under this hierarchical structure, construct a distribution graph 

and define value-conditional structural entropy

• Estimation and Intrinsic Reward: considering the impracticality of directly acquiring visitation 

probabilities, we employ the k-NN estimator to estimate the lower bound of value-conditional entropy

Background Methodology

The Proposed SI2E Framework
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Background Methodology Experiments

• Underlying Agent: A2C, DrQv2

• Baselines: Shannon entropy (SE), value-condition Shannon entropy (VCSE) 

MiniGrid and MetaWorld Evaluation
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Background Methodology Experiments

• Underlying Agent: DrQv2

• Baselines: Shannon entropy (SE), value-condition Shannon entropy (VCSE), MADE 

DMControl Evaluation
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Background Methodology Experiments

Visualization Experiments:
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Background Methodology Experiments Conclusion

Conclusion and Future Works

• This paper proposes a novel structural information principles-based framework, SI2E, for effective

exploration in high-dimensional RL environments with sparse rewards.

• We maximize the value-conditional structural entropy to enhance coverage across the state-action

space and establish theoretical connections between SI2E and traditional information-theoretic

methodologies, underscoring the framework’s rationality and advantages.

• Through extensive and comparative evaluations, SI2E significantly improves final performance and

sample efficiency over state-of-the-art exploration methods.

• Our future work includes expanding the height of encoding trees and the range of experimental

environments, particularly under high-dimensional and sparse-reward contexts.
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