

Effective Exploration Based on the Structural Information Principles

Xianghua Zeng¹, Hao Peng¹, Angsheng Li^{1,2}

¹State Key Laboratory of Software Development Environment, Beihang University, Beijing, China ²Zhongguancun Laboratory, Beijing, China.

Email: zengxianghua@buaa.edu.cn

Code: https://github.com/SELGroup/SI2E

Background

Information-theoretic Reinforcement Learning

Reinforcement Learning:

- pivotal technique for addressing sequential decision-making problems
- balance between exploration and exploitation

Information-theoretic Exploration:

- maximum entropy framework
- tendency to bias exploration towards low-value states
- value-conditional state entropy
- **Representation Learning:**
- information bottleneck principle

Critical Limitation:

• existing approaches overlook the inherent structure within state and action spaces

Background

Motivation

Markov Decision Process:

- six states and four actions
- optimizing the return to the initial state

Traditional Exploration Policy:

- maximizing state-action Shannon entropy
- encompassing all possible transitions in blue color **Policy Incorporating Inherent State-action Structure:**
- dividing redundant transitions into a low-value sub-community
- minimizing entropy for this state-action sub-community
- maximizing entropy for all state-action transitions
- maximal coverage for crucial transitions in red color

Background

Structural Information Principles

Encoding Tree:

- dynamic uncertainty within complex graphs
- hierarchical partitioning tree for all vertices

Structural Entropy:

- single-step random walk between vertices
- minimum number of bits required to encode an accessible vertex **However:**
- definition limited to single-variable graph
- difficulty to measure structural relationship between multiple variables
- independent modeling for state or action variables in RL

Encoding Tree $\cal T$

Structural Mutual Information

- **undirected bipartite graph for joint distribution of two variables**
- **2-layer approximate binary encoding tree**
- **l-transformation on the optimal encoding tree**

• **structural mutual information**

$$
I^{SI}(X;Y) = \sum_{l=0}^{n-1} \left[H^{SI}(X) + H^{SI}(Y) - H^{T_{xy}^l}(X,Y) \right] = \sum_{i,j} \left[p(x_i, y_j) \cdot \log \frac{2}{p(x_i) + p(y_j)} \right]
$$

The Proposed SI2E Framework

Background Methodology

The Proposed SI2E Framework

Stage 1: State-action Representation Learning

• **Structural Mutual Information Principle**: building on the Information Bottleneck (IB), present an embedding principle that aims to minimize $I^{SI}(Z_t; S_t)$ while maximizing $I^{SI}(Z_t; S_{t+1})$.

Theorem 4.1. For a joint distribution of variables X and Y that shows a one-to-one correspondence, $I^{SI}(X;Y)$ equals $I(X;Y)$.

• **Representation Learning Objective**: due to the computational challenges of direct optimization, equate the minimization of $I^{SI}(Z_t; S_t)$ to the minimization of $I(Z_t; S_t)$ and $H(Z_t|S_t)$, and equate the maximization of $I^{SI}(Z_t; S_{t+1})$ to the maximization of $I(Z_t; S_{t+1})$.

$$
L = L_{up} + L_{z|s} + \eta \cdot L_{s|z}
$$

Background Methodology

The Proposed SI2E Framework

Stage 2: Maximum Structural Entropy Exploration

- **Hierarchical State-action Structure:** derived from the history of agent-environment interactions, form a complete graph for all state-action pairs and minimize its 2-dimensional structural entropy to generate the hierarchical community structure
- **Value-conditional Structural Entropy:** under this hierarchical structure, construct a distribution graph and define value-conditional structural entropy
- **Estimation and Intrinsic Reward**: considering the impracticality of directly acquiring visitation probabilities, we employ the k-NN estimator to estimate the lower bound of value-conditional entropy

$$
H(V_0) - H(V_1) \approx \frac{d_z}{n_0} \cdot \sum_{i=0}^{n_0-1} \log d(v_i^0) - \frac{d_z}{n_1} \cdot \sum_{i=0}^{n_1-1} \log d(v_i^1) + C
$$

MiniGrid and MetaWorld Evaluation

- **Underlying Agent: A2C, DrQv2**
- **Baselines: Shannon entropy (SE), value-condition Shannon entropy (VCSE)**

Background Methodology Experiments

DMControl Evaluation

- **Underlying Agent: DrQv2**
- **Baselines: Shannon entropy (SE), value-condition Shannon entropy (VCSE), MADE**

Visualization Experiments:

Conclusion and Future Works

- **This paper proposes a novel structural information principles-based framework, SI2E, for effective exploration in high-dimensional RL environments with sparse rewards.**
- **We maximize the value-conditional structural entropy to enhance coverage across the state-action space and establish theoretical connections between SI2E and traditional information-theoretic methodologies, underscoring the framework's rationality and advantages.**
- **Through extensive and comparative evaluations, SI2E significantly improves final performance and sample efficiency over state-of-the-art exploration methods.**
- **Our future work includes expanding the height of encoding trees and the range of experimental environments, particularly under high-dimensional and sparse-reward contexts.**