

Effective Exploration Based on the Structural Information Principles

Xianghua Zeng¹, Hao Peng¹, Angsheng Li^{1,2}

¹State Key Laboratory of Software Development Environment, Beihang University, Beijing, China ²Zhongguancun Laboratory, Beijing, China.

Email: zengxianghua@buaa.edu.cn

Code: https://github.com/SELGroup/SI2E

Information-theoretic Reinforcement Learning

Reinforcement Learning:

- pivotal technique for addressing sequential decision-making problems
- balance between exploration and exploitation

Information-theoretic Exploration:

- maximum entropy framework
- tendency to bias exploration towards low-value states
- value-conditional state entropy

Representation Learning:

information bottleneck principle

Critical Limitation:

• existing approaches overlook the inherent structure within state and action spaces

Motivation

Markov Decision Process:

- six states and four actions
- optimizing the return to the initial state

Traditional Exploration Policy:

- maximizing state-action Shannon entropy
- encompassing all possible transitions in blue color
 Policy Incorporating Inherent State-action Structure:
- dividing redundant transitions into a low-value sub-community
- minimizing entropy for this state-action sub-community
- maximizing entropy for all state-action transitions
- maximal coverage for crucial transitions in red color

Structural Information Principles

Encoding Tree:

- dynamic uncertainty within complex graphs
- hierarchical partitioning tree for all vertices

Structural Entropy:

- single-step random walk between vertices
- minimum number of bits required to encode an accessible vertex
 However:
- definition limited to single-variable graph
- difficulty to measure structural relationship between multiple variables
- independent modeling for state or action variables in RL

Encoding Tree T

Structural Mutual Information

- undirected bipartite graph for joint distribution of two variables
- 2-layer approximate binary encoding tree
- I-transformation on the optimal encoding tree

• structural mutual information

$$I^{SI}(X;Y) = \sum_{l=0}^{n-1} \left[H^{SI}(X) + H^{SI}(Y) - H^{T^{l}_{xy}}(X,Y) \right] = \sum_{i,j} \left[p(x_i, y_j) \cdot \log \frac{2}{p(x_i) + p(y_j)} \right]$$

Methodology

The Proposed SI2E Framework

The Proposed SI2E Framework

Stage 1: State-action Representation Learning

• Structural Mutual Information Principle: building on the Information Bottleneck (IB), present an embedding principle that aims to minimize $I^{SI}(Z_t; S_t)$ while maximizing $I^{SI}(Z_t; S_{t+1})$.

Theorem 4.1. For a joint distribution of variables X and Y that shows a one-to-one correspondence, $I^{SI}(X;Y)$ equals I(X;Y).

• **Representation Learning Objective**: due to the computational challenges of direct optimization, equate the minimization of $I^{SI}(Z_t; S_t)$ to the minimization of $I(Z_t; S_t)$ and $H(Z_t|S_t)$, and equate the maximization of $I^{SI}(Z_t; S_{t+1})$ to the maximization of $I(Z_t; S_{t+1})$.

$$L = L_{up} + L_{z|s} + \eta \cdot L_{s|z}$$

The Proposed SI2E Framework

Stage 2: Maximum Structural Entropy Exploration

- Hierarchical State-action Structure: derived from the history of agent-environment interactions, form
 a complete graph for all state-action pairs and minimize its 2-dimensional structural entropy to
 generate the hierarchical community structure
- Value-conditional Structural Entropy: under this hierarchical structure, construct a distribution graph and define value-conditional structural entropy
- **Estimation and Intrinsic Reward**: considering the impracticality of directly acquiring visitation probabilities, we employ the k-NN estimator to estimate the lower bound of value-conditional entropy

$$H(V_0) - H(V_1) \approx \frac{d_z}{n_0} \cdot \sum_{i=0}^{n_0-1} \log d(v_i^0) - \frac{d_z}{n_1} \cdot \sum_{i=0}^{n_1-1} \log d(v_i^1) + C$$

Methodology

Experiments

MiniGrid and MetaWorld Evaluation

- Underlying Agent: A2C, DrQv2
- **Baselines:** Shannon entropy (SE), value-condition Shannon entropy (VCSE)

MiniGrid	RedBlueDoors-6x6		SimpleCrossingS9N1		KeyCorridorS3R1	
Navigation	Success Rate (%)	Required Step (K)	Success Rate (%)	Required Step (K)	Success Rate (%)	Required Step (K)
A2C	-	-	88.18 ± 3.46	570.08 ± 15.87	86.57 ± 2.26	658.74 ± 21.03
A2C+SE	-	-	88.59 ± 4.62	394.39 ± 66.14	87.20 ± 4.94	463.86 ± 38.27
A2C+VCSE	$\underline{79.82} \pm 7.26$	$\underline{1161.90} \pm 241.59$	91.30 ± 1.92	$\underline{204.02} \pm 25.60$	86.01 ± 0.91	190.20 ± 6.11
A2C+SI2E	85.80 ± 1.48	461.90 ± 61.53	93.64 ± 1.63	$\textbf{139.17} \pm 27.03$	94.20 ± 0.42	129.06 ± 6.11
Abs.(%) Avg.	$5.98(7.49) \uparrow$	$700.0(60.25)\downarrow$	$2.34(2.56)\uparrow$	$64.85(31.79)\downarrow$	$7.00(8.03)$ \uparrow	$61.14(32.15)\downarrow$
MiniGrid	DoorKey-6x6		DoorKey-8x8		Unlock	
Navigation	Success Rate (%)	Required Step (K)	Success Rate (%)	Required Step (K)	Success Rate (%)	Required Step (K)
A2C	92.67 ± 8.47	567.20 ± 96.57	-	-	92.48 ± 11.96	669.78 ± 154.74
A2C+SE	93.18 ± 6.81	476.34 ± 94.63	72.60 ± 20.32	$\underline{1515.81} \pm 324.28$	91.34 ± 18.37	634.37 ± 240.51
A2C+VCSE	$\underline{94.08} \pm 2.58$	$\underline{336.75} \pm 19.84$	94.32 ± 11.09	1900.96 ± 398.65	93.12 ± 3.43	405.22 ± 52.22
A2C+SI2E	97.04 ± 1.52	$\textbf{230.60} \pm 19.85$	98.58 ± 3.11	1090.96 ± 125.77	$\textbf{97.13} \pm 3.35$	309.14 ± 53.71
Abs.(%) Avg.	$2.96(3.15)\uparrow$	$106.15(31.52)\downarrow$	$4.26(4.52)\uparrow$	$424.85(28.03)\downarrow$	$4.01(4.31)\uparrow$	$96.08(23.71)\downarrow$
MetaWorld	Button Press		Door Open		Drawer Open	
Manipulation	Success Rate (%)	Required Step (K)	Success Rate (%)	Required Step (K)	Success Rate (%)	Required Step (K)
DrQv2	94.55 ± 4.64	105.0 ± 5.0	-	-	-	-
DrQv2+SE	93.05 ± 7.67	95.0 ± 5.0	-	-	25.31 ± 7.40	-
DrQv2+VCSE	89.80 ± 3.29	$\underline{77.5} \pm 2.5$	80.90 ± 10.19	-	$\underline{82.74} \pm 7.46$	$\underline{175.0} \pm 5.0$
DrQv2+SI2E	99.60 ± 0.57	62.5 ± 7.5	95.77 ± 1.05	87.5 ± 2.5	95.96 ± 3.00	82.5 ± 2.5
Abs.(%) Avg.	$5.05(5.34) \uparrow$	$15.0(19.35)\downarrow$	$14.87(18.38)\uparrow$	-	$13.22(15.98)\uparrow$	$92.5(52.86)\downarrow$
MetaWorld	Faucet Close		Faucet Open		Window Open	
Manipulation	Success Rate (%)	Required Step (K)	Success Rate (%)	Required Step (K)	Success Rate (%)	Required Step (K)
DrQv2	53.33 ± 1.92	-	-	-	88.18 ± 1.50	192.5 ± 2.5
DrQv2+SE	92.36 ± 3.66	71.25 ± 6.25	-	-	93.14 ± 2.03	172.5 ± 2.5
DrQv2+VCSE	94.21 ± 1.74	$\underline{60.0} \pm 5.0$	87.23 ± 5.29	$\underline{67.5} \pm 5.0$	93.17 ± 1.45	$\underline{127.5} \pm 7.5$
DrQv2+SI2E	99.37 ± 1.18	27.5 ± 2.5	97.06 ± 1.39	$5\overline{1.25} \pm 3.75$	99.46 \pm 0.35	77.5 ± 2.5

Background Methodology Experiments

DMControl Evaluation

- Underlying Agent: DrQv2
- **Baselines:** Shannon entropy (SE), value-condition Shannon entropy (VCSE), MADE

Domain, Task	Hopper Stand	Cheetah Run	Quadruped Walk	Pendulum Swingup	Cartpole Balance	Cartpole Swingup
DrQv2	87.59 ± 11.70	229.28 ± 123.93	289.79 ± 24.17	424.21 ± 246.96	998.97 ± 22.95	_
DrQv2+SE	313.39 ± 94.15	228.82 ± 126.21	290.27 ± 24.20	10.80 ± 2.92	993.80 ± 75.24	219.69 ± 62.21
DrQv2+VCSE	711.32 ± 30.84	456.26 ± 22.20	243.74 ± 29.91	$\underline{824.17} \pm 99.59$	$\underline{998.65} \pm 9.58$	$\underline{707.76} \pm 50.38$
DrQv2+MADE	$\underline{717.09} \pm 112.94$	366.59 ± 53.74	262.63 ± 23.92	672.11 ± 34.63	996.16 ± 40.60	704.18 ± 41.75
DrQv2+SI2E (Ours)	797.17 ± 53.21	464.08 ± 29.32	399.51 ± 29.05	885.50 ± 38.28	999.58 \pm 2.97	795.09 ± 90.49
Abs.(%) Avg. ↑	80.08(11.17)	7.82(1.71)	109.24(37.63)	61.33(7.44)	0.93(0.09)	87.33(12.34)

Methodology

Visualization Experiments:

Conclusion and Future Works

- This paper proposes a novel structural information principles-based framework, SI2E, for effective exploration in high-dimensional RL environments with sparse rewards.
- We maximize the value-conditional structural entropy to enhance coverage across the state-action space and establish theoretical connections between SI2E and traditional information-theoretic methodologies, underscoring the framework's rationality and advantages.
- Through extensive and comparative evaluations, SI2E significantly improves final performance and sample efficiency over state-of-the-art exploration methods.
- Our future work includes expanding the height of encoding trees and the range of experimental environments, particularly under high-dimensional and sparse-reward contexts.