

Advancing Open-Set Domain Generalization Using Evidential Bi-Level Hardest Domain Scheduler

 Kunyu Peng¹, Di Wen¹, Kailun Yang², Ao Luo³, Yufan Chen¹, Jia Fu⁴, M. Saquib Sarfraz^{1,5}, Alina Roitberg⁶, Rainer Stiefelhagen¹
¹Karlsruhe Institute of Technology ²Hunan University ³Waseda University
⁴KTH Royal Institute of Technology ⁵Mercedes-Benz Tech Innovation ⁶University of Stuttgart

Open Set Domain Generalization

- A joint challenge of the combination of open set recognition and domain generalization.
- The model is expected to generalize well on unseen domain while delivering low confidence score on the samples from unseen categories.
- Existing literatures have demonstrated that meta learning work well on the open set domain generalization challenge.

Limitation of Existing Meta Learning Approach

• The existing state of the art meta learning approach relies on sequential domain scheduler to achieve the data partition for the meta train and meta test stages. [Wang et al. ICCV2023]

 Question: Will an adaptive domain scheduler help to improve open-set domain generalization performance?

How to Achieve Adaptive Domain Scheduler?

- We designed a **follower network** which is jointly trained with the main network in a **bilevel** manner.
- The follower network shares the same model structure with the main network.
- The follower network is used to predict the **domain reliability**.
- We conduct the data partition for meta learning according to the domain with less reliability (hardest domain).

Max Rebiased Evidential Learning

- Evidential learning is effective to achieve better confidence calibration, however it is easy to get overfitting during the training.
- Solution: Max Rebiased Regularization.

$$\mathcal{L}_{RBE}(\mathbf{y}, \mathbf{x}; \Theta) = \sum_{i \in \{1, 2\}} \left[\sum_{c=1}^{\mathcal{C}} \left[\mathbf{y}_c \left(\log S_i - \log(R_{\theta_i} \left(M_\alpha(\mathbf{x}) \right)_c + 1 \right) \right) \right] - \mathcal{R}_{RB}(\mathbf{x}; \Theta)$$

 $\mathcal{R}_{RB}(\mathbf{x};\Theta) = \sum_{i \in \{1,2\}} \mathbb{E} \left[\mathcal{K}(R_{\theta_i}(M_\alpha(\mathbf{x})), R_{\theta_i}(M_\alpha(\mathbf{x}))) \right] - 2 * \mathbb{E} \left[\mathcal{K}(R_{\theta_1}(M_\alpha(\mathbf{x})), R_{\theta_2}(M_\alpha(\mathbf{x}))) \right].$

 $S_i = \sum_{c=1}^{C} (Dir(p|R_{\theta_i} (M_{\alpha}(\mathbf{x}))_c + 1))$

Bilevel Optimization

 We jointly updated the parameters of the follower network and the main network using the following equation.

$$\Theta^* = \underset{\Theta}{\operatorname{arg\,min}} \mathcal{L}_m(M_{\Theta}(\mathbf{x}), \omega^* \leftarrow M_{\beta^*}(\mathbf{x})) \quad \text{subject to} \quad \beta^* = \underset{\beta}{\operatorname{arg\,min}} L_f(M_{\Theta}(\mathbf{x}), M_{\beta}(\mathbf{x}))$$

 $\beta^*(\Theta) = \arg\min_{\beta} L_f(M_{\Theta}(\mathbf{x}), M_{\beta}(\mathbf{x}))$

$$\Theta^* = \operatorname*{arg\,min}_{\Theta} L_m(\Theta, \beta^*(\Theta))$$

Hardest Domain Scheduler

• We thereby achieve the hardest domain scheduler using the following equation.

$$d^* = \underset{d}{\operatorname{arg\,min}} \{\omega_d | d \in \mathcal{D}\}), \ \omega_d = \underset{c \in \mathcal{C}^*}{\operatorname{min}} \left[\exp\left[1 + \sum_{i=1}^{N_c^*} \frac{(M_\beta(\mathbf{x}_i^{(c,d)}))}{N_c^*} \right] * (0.1 + \sigma * \gamma_d) \right]$$

How to Use Data Partition in Meta Learning?

Algorithm 1 Training with Evidential Bi-Level Hardest Domain Scheduler.

- **Require:** Known domains \mathcal{D} ; Known classes \mathcal{C} ; backbone M_{α} ; two rebiased layers R_{θ_1} and R_{θ_2} ; two heads H_{ϕ_1} and H_{ϕ_2} ; follower scheduling network M_{β} ; weighted cross entropy WCE; mean squared error MSE.
- 1: while not converged do
- 2: Randomly select two known classes $c_i, c_j \leftarrow C$;
- 3: Get the hardest domain d^* using M_β by Eq. 5; Select two domains from $d_i, d_j \leftarrow \mathcal{D}/\{d^*\}$;
- 4: Sample data $\Omega_a, \Omega_b = \{ \mathbf{x}^{[c_k, d_k]} | k \in [i, j] \}, \{ \mathbf{x}^{[c_k, d_k]} | c_k \in \{ \mathcal{C} / \{ c_i, c_j \}, d_k \in \{ d^* \} \};$
- 5: Construct meta-train set by $\Omega_{m-train} = \Omega_a \cup \Omega_b$;
- 6: Meta-train:
- 7: **for** \mathbf{x} in $\Omega_{m-train}$ **do**;
- 8: Extract rebiased embeddings $\mathbf{f}_1 = R_{\theta_1}(M_\alpha(\mathbf{x}))$ and $\mathbf{f}_2 = R_{\theta_2}(M_\alpha(\mathbf{x}))$;
- 9: Obtain the max rebiased discrepancy evidential learning loss $L_{RBE}(\mathbf{x})$ using \mathbf{f}_1 and \mathbf{f}_2 ;
- 10: Follower learning $L_{REG}(\mathbf{x}) = MSE(M_{\beta}(\mathbf{x}), \frac{1}{2}\sum_{k \in \{1,2\}} Conf(H_{\Phi_k}(\mathbf{f}_k)));$
- 11: Obtain classification loss $L_{CLS}(\mathbf{x}) = \sum_{k \in \{1,2\}} (WCE(H_{\Phi_k}(M_\alpha(\mathbf{x}))), \mathbf{y}, \omega)), \omega \leftarrow M_\beta(\mathbf{x})$, where y indicates the classification annotation;
- 12: **end for**
- 13: $L_{m-train} \leftarrow \sum_{\mathbf{x} \in \Omega_{m-train}} (L_{CLS}(\mathbf{x}) + L_{REG}(\mathbf{x}) + L_{RBE}(\mathbf{x}))$. Backpropagation and parameter update for the whole network;
- 14: Meta-test:
- 15: Sample data $\Omega_a^*, \Omega_b^* = \{\mathbf{x}^{[c_k, d_k]} | c_k \in \{c_i, c_j\}, d_k \in \{d^*\}\}, \{\mathbf{x}^{[c_k, d_k]} | c_k \in \mathcal{C}/\{c_i, c_j\}, d_k \in \{d_i, d_j\}\}$. Construct meta-test set $\Omega_{m-test} = \Omega_a^* \cup \Omega_b^*$;
- 16: Obtain loss for meta-test $L_{m-test} \leftarrow \sum_{\mathbf{x} \in \{\Omega_{m-test}\}} (L_{CLS}(\mathbf{x}) + L_{REG}(\mathbf{x}) + L_{RBE}(\mathbf{x}));$
- 17: Back propagation and parameter update using $L_{all} = L_{m-test} + L_{m-train}$.
- 18: end while

An Overview of the Performances

 Our approach achieve SOTA performances on three benchmarks for OSDG, i.e., PACS, DigitsDG, and OfficeHome.

	1	Photo (P)		Art (A)			Cartoon	(C)	1	Sketch (S)			Avg								
Method	Acc	H-score	OSCR	Acc	H-score	OSCR	Acc	H-score	OSCR	Acc	H-score	OSCR	Acc	H-score	OSCR							
OpenMax [3] ERM [50]	95.56 96.04	92.48 93.40	- 95 11	O ffi	cëĤo	ome	78.61 77.63	64.36 62.80	62.57	70.89 70.44	50.67 55.81	51.75	82.19 82.07	69.28 70.64	70 33							
ARPL [8] MMLD [39]	94.83	95.06 88.80	9	9 9 Method		1	Art			Clipart			Real World			d Product			Avg			
RSC [23]	94.43	88.37	9 N			Acc	H-s	core	OSCR	Acc	H-score	OSC	CR	Acc 1	H-score	OSCR	Acc	H-score	OSCR	Acc	H-score	OSCR
DAML [46] Mix Style [65]	91.44	80.87	8 0	DpenMa	x [3]	65.59	9 56	.00	-	60.02	47.34	-	8	33.56	70.48	-	80.50	68.45	-	72.92	60.57	-
SelfReg [28]	95.23	89.34	9 N	AixStyle	[65]	62.8	53	.93	50.71	52.46	44.53	42.2	27 8	31.16	67.70	67.95	76.29	63.46	62.51	68.18	57.41	55.86
ML Didits D	94.99	91.48	9 E	ERM [50)]	66.30) 57	.39	54.86	59.60	46.81	47.8	84 8	34.50	69.99	74.03	80.81	67.40	67.44	72.80	60.40	61.04
	94.43	74.07	8 A	ARPL [8]		60.00	6 50.34	.34	45.68	54.82	45.72	43.2	21 7	76.24	62.04	61.73	75.30	62.47	60.19	66.61	55.14	52.70
l Method	Acc	MNIST H-score	05 0	ALDG [30]	66.50	5 52	.45	55.10	58.85	53.09	47.0	69 8	30.10	70.66	70.02	75.02	66.16	63.49	70.13	60.59 57.20	59.08
OpenMax [3]	97.33	52.03		DDG-Ne	oj st [4]	64.10	2 55) 54	.05 .97	47.87 50.64	61.06	45.78	47.	33 8	33.93	70.04	65.48 71.34	79.07	65.47	65.49	72.04	60.69	58.95 58.95
MixStyle [65] ERM [50] ADD [81	97.86 97.47 97.75	73.25 80.90 85.74	89 92 N	AEDIC-	EDIC-cls [54] 6 EDIC-bcls [54] 6		1 55.78		55.85 56.21	61.14	54.21 53.28	48.	51 8	85.03	71.16	73.15	80.69 80.69	67.72 67.70	68.09 67.17	73.42	62.22 60.82	61.40
MLDG [30]	97.83	80.36	94 -		DCI3 [54]	00.0			56.00	61.14	55.20	40.		5.05	70.01	74.00	00.07	51.00	50.05	75.42	00.02	61.01
SWAD [6] ODG-Net [4]	97.71 96.86	84.44 71.34	92 E 90 E	BiL-Ha	DS-cls DS-bcls	68.18 68.18	5 59 3 53	.66 .57	56.83 57.49	63.48 63.48	57.01 52.12	52.3 53.3	26 8 14 8	35.48 3 5.48	72.88 74.20	74.45 75.64	81.61 81.61	71.03 72.20	70.25 71.62	74.69 74.69	65.15 62.97	63.45 64.47
MEDIC-cls [54] MEDIC-bcls [54]	97.89 97.89	67.37 83.20	96 95.81	71.14	60.98	58.28	76.00	58.77	57.60	88.11	62.24	72.91	83.28	66.30	71.15							
EBiL-HaDS-cls EBiL-HaDS-bcls	99.50 99.50	87.40 91.63	97.49 97.58	74.28 74.28	56.58 60.72	60.86 59.39	80.33 80.33	61.27 62.23	62.84 63.88	93.97 93.97	73.95 69.92	78.14 79.28	87.02 87.02	70.27 71.13	75.83 75.87							

An Overview of the Performances

Our approach shows good generalizability across different backbones on PACS dataset.
<u>ResNet50</u>

DocNot19											Photo (P)			Art (A)			Cartoon (C)			Sketch (S)			Avg		
Residence						Method		Acc	H-score	OSCR	Acc	H-score	OSCR	Acc	H-score	OSCR	Acc	H-score	OSCR	Acc	H-score	OSCR			
		Photo (P)	0.000		Art (A)	0000		OpenMax [3]		97.58	93.09	-	88.37	73.91	-	84.38	68.23	-	80.07	68.06	-	87.60	75.82	-	
Method	Acc	H-score	OSCR	Acc	H-score	OSCR	Acc	ARPL [8]		97.09	96.81	96.86	88.24	77.48	80.32	82.68	67.19	68.31	78.08	70.04	69.47	86.52	77.88	78.74	
OpenMax [3]	95.56	92.48	-	83.68	69.61	-	78.61	MIRO [7]		94.85	92.32	93.27	88.51	65.02	79.01	82.98	63.05	73.72	82.22	69.47	70.61	87.14	72.47	79.15	
ERM [50]	96.04	93.40	95.11	84.18	70.54	71.89	77.63	MLDG [30]		96.77	95.85	96.33	87.99	77.16	79.93	85.45	68.74	71.32	82.25	73.16	72.27	87.61	78.73	79.96	
ARPL [8]	94.83	95.06	94.63	83.93	67.88	68.82	78.56	EKM [50]		97.09	90.38	90.08	89.99	70.05	82.44	85.10	65.79	70.59	80.31	10.29	70.10	88.12	72.51	/9.9/	
MMLD [39]	94.83	88.80	92.94	84.43	64.83	69.43	77.11	MixStyle [65]		90.55	02 57	95.40	92.00	70.75	82.27	86.80	68.02	74.69	04.33 94.99	71 57	72.41	89.00	78.00	81.66	
RSC [23]	94.43	88.37	91.38	83.36	70.27	73.55	78.09	CrossMatch [6	CrossMatch [67]		95.57	95.50	90.87	75.67	82 32	83.02	67.02	74.08	81.61	72.03	73.00	88 37	77.76	81.00	
DAML [46]	91.44	80.87	82.83	83.11	72.05	71.75	79.11	SWAD [6]		96.33	84 56	93.24	93.75	68.41	85.00	85.52	58 57	75.90	81.01	74.66	74.65	89.40	71.55	82 20	
MixStyle [65]	95.23	82.02	88.99	86.18	70.62	72.57	78.92	MVDG [60]	MVDG [60]		95.02	96.63	92.50	79.47	85.02	86.02	71.05	76.03	83 44	75.24	75.18	89 78	80.20	83.21	
SelfReg [28]	95.72	89.34	92.26	86.24	72.45	73.77	80.77	ODG-Net [4]		96.53	94.93	95.58	89.24	65.22	74.60	83.86	64.32	71.20	84.80	77.58	77.38	88.61	75.51	79.69	
MLDG [30]	94.99	91.48	93.70	84.12	69.52	72.15	78.45	MEDIC -1-15	41	06.27	02.00	05.27	01.02	00.00	04.67	06.65	75.05	77.40	04.61	75.00	76.70	00.01	01.50	02.50	
MVDG [60]	94.43	74.07	88.07	87.62	71.98	75.05	81.18	MEDIC-cis [5	4] 5 41	96.37	93.80	95.37	91.62	80.80	84.0/	80.03	/5.85	78.20	84.01	79.25	70.79	89.81	81.50	83.38	
ODG-Net [4]	93.54	89.39	89.76	85.74	72.36	73.41	81.59	MEDIC-bcis	54]	96.37	94.75	95.79	91.62	81.61	85.81	80.05	11.39	/8.30	84.61	/8.35	/9.50	89.81	83.03	84.85	
ResNet152	94.83 04.83	83.68	90.30 92.40	86.20	69.35 73.82	74.16	81.94	EBiL-HaDS-cl EBiL-HaDS-b	ls (ours) cls (ours)	97.82 97.82	93.58 96.04	95.69 97.14	92.31 92.31	80.95 82.80	84.35 86.17	87.52 87.52	75.68 78.34	78.68 79.85	85.91 85.91	76.05 78.68	78.57 81.32	90.89 90.89	81.57 83.97	84.32 86.12	
	Photo (P)			Art (A)		Cartoon (C)			SKEICH (S)			Avg													
Method	Acc	Acc H-score OSCR Acc H-score OSCR		CR A	Acc H-score	OSCR	Acc	H-score	e OSC	R A	cc H-s	core O	SCR												
ARPL	94.35	85.45	86.74	89.8	1 71.2	7 78.	53 83	3.91 69.75	72.08	77.53	52.70	66.6	8 77.	53 69	.81 76	5.01									
MLDG	96.20	91.07	94.64	89.8	1 77.65	5 82.	19 83	3.86 73.66	74.03	82.89	64.30	72.9	8 88	19 76	.67 80	0.96									
SWAD	95.64	84.82	89.74	86.3	0 73.86	5 75.9	91 78	8.49 70.18	68.41	76.92	75.33	63.3	5 84	34 76	.05 74	1.35									
ODG-Net	95.88	89.11	91.85	89.6	2 80.65	5 82.4	48 8	5.15	Ras		77.00	70.0		40 70	<u> </u>	0.05									
	04.67				Dus		Phot	o (P)		Ar	t (A)	-	Cartoo	n (C)		Sketch	ı (S)		Avg						
MEDIC-cls	94.67	49.54	76.98	89.3	7 73.20	5 / 70 / 70 / 70 / 70 / 70 / 70 / 70 / 7	79 80 70 80	0.59 Method		A	cc H-sc	core OS	CR	Acc H-s	core OS	CR A	Acc H-sco	ore OSC	CR Ac	e H-sco	re OSC	CR AC	c H-scor	e OSCR	
MEDIC-bels	94.67	12.88	81.30	89.3	/ /4.94	2 78.	10 80	ARPL		99	.19 95.	31 98	.61 9	0.49 85	.46 88	.59 81	.88 72.1	7 73.3	63.0	1 29.3	3 50.5	9 83.	64 70.57	77.78	
EBiL-HaDS-cls (ours)	97.90	91.66	96.62	92.0	6 81.52	2 85.4	43 8	7.21 MLDG		99	.19 95.	40 98	.88 9	1.87 82	.46 89	.47 80	0.56 69.6	2 74.1	9 61.6	6 40.7	9 43.8	8 83.	32 72.07	76.61	
EBiL-HaDS-bcls (ours)	97.90	94.34	97.39	92.0	6 82.00	85.9	94 87	7.21 SWAD		98	.55 93.	19 97	.62 90	0.81 81	.34 88	.52 83	3.24 73.0	3 76.5	57.8	39 35.8	3 41.6	8 82.	62 70.85	76.10	
								ODG-Ne	t	97	.58 96.	24 95	.23 9	0.49 83	.32 87	.90 82	2.36 68.6	6 75.8	62.5	i 43.5	9 50.2	83.	26 72.95	77.29	
								MEDIC-0	MEDIC-cls		.03 95.	33 98	.22 92	2.06 83	.27 87	.46 85	6.62 69.7	9 75.3	68.4	0 41.9	5 56.5	6 86.	28 72.59	79.40	
								MEDIC-I	ocls	99	.03 96.	04 97	.55 92	2.06 82	.68 87	.73 85	5.62 69.1	5 76.8	68.4	0 39.6	55.9	86.	28 71.87	79.50	
								EBiL-Ha	EBiL-HaDS-cls (ours		.52 97.	30 99	.11 94	4.68 86	.10 92	.10 89	.22 74.3	1 77.7	6 69.4	9 44.34	4 55.3	7 88.	23 75.53	81.09	
								EBiL-Ha	DS-bcls (or	urs) 99	.52 96.	91 99	.18 9	4.68 88	.31 92	.28 89	.22 73.9	1 77.9	69.4	9 48.0	9 56.7	8 88.	23 76.81	81.55	
										-															

Thank you for your interests!