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* Uniform blurring, usually can be described as the convolution:

y=kQx+n

* Blind image deblurring (BID): vy — (k,x)
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* Challenge: solution ambiguity: y=kQzx =0Qy
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« DNN-based re-parametrization of latent x/k :
T :=Gz(;0z) k:=0r(;Ok)
» Standard self-supervised reconstruction loss:

Lsr(Ok,0z) == ||0k(;0k) @ Gz (+;Oz) _yH%

* Challenge: Overfitting due to the lack of ground truth (GT) data.

Gz (0z) = y Gr(-;0K) — &
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Two key questions for self-supervised BID:

Q1: How to formulate a better self-supervised loss?
Al: A cross-scale loss function:
Leveraging the resolution-independent properties of Implicit Neural Representation

(INR) for latent images/kernels.

Q2: How can we efficiently train the two NN generators to ensure accurate
convergence to the latent images and kernels?
A2: A progressive coarse-to-fine scheme:

Enhancing training efficiency and ensuring the convergence to GT image/kernel.
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Self-supervised cross-scale loss for BID i PROcESNCSRER

* Without GT images, the only readily available loss function to train the generators is the
fitting loss:

Lt(Ok, 0z) = Mf(y — k® x) = Mg ((I)k(]lkE O) ® e(le; Oz), y)

where M ((-) is some distance metric.

« Such fitting loss clearly is not sufficient to resolve solution ambiguity!
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Self-supervised cross-scale loss for BID i PROcESNCSRER

* To alleviate over-fitting, the down-sampled version of ¥, denoted as Y|, for scale s,
has often been used to 1nitiate the blur kernel estimate.

* However, (x ® k)l #xlo ® ko

* We present a cross-scale constraint that accurately characterizes the connection
between (y,x, k) at different scales:

Proposition 1. For a kernel (filter) k, let g1, g2, g3 denote its associated QMF filters defined by
gi|m, n] — (_1)mk[mv n]v gg[m, n] — (_1)nk[mv n]? gs [m? n] — (_1)m+nk[ma n|,

for any |/m,n| € l. Then, we have the following relation between consecutive two dyadic scales:

(xl2) ® (kl2) = = ((x @ k)|2 + Z(m ® ga)la).

d=1

=~ —



Self-supervised cross-scale loss for BID
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* We introduce a scale consistency loss across two consecutive scales:

For each scale s :

LG (Ok, 82) = M (4(2915) @ (K)), (2 @ kD)o + 3 (9 @ g57)1)
1<d<3
— Mc(4($(8+1)) ® (k(s-l—l))’ (.’L‘(S) R k(S))\l{2 ki3 Z (:B(S) R g((f))iz)
1<d<3
 Ablation study on the Lross in terms of of PSNR/SSIM.
Category Manmade | Natural People Saturated Text Average
WO Lovoss 21.19/0.778(25.84/0.887|30.74/0.918 | 17.69/0.682 26.75/0.917 | 24.44/0.836
Ours 23.24/0.893(26.27/0.933 | 31.53/0.944 |17.76/0.683|27.01/0.930 | 25.16/0.879

The scale-consistency loss providing additional regularization for training two INR-

based generators.
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Resolution-free INR-based Generators RN T

* The blur kernel and the latent image are re-parameterized by two INR models:

k(Ig;Or) : EKli,j] =

o Dy
2 (lz;O) : @i, j] = Do ([ ])7 i, 7] € Iz,

e Let kO =k, (9 = z denotes the original scale, we can form both the kernel and

the image 1n a dyadic pyramid:
k) = (kG7D) |, and 2 = (2tV) ],, forl<s<S,.

* INR enables the model to generate the prediction with higher/lower resolutions
from the same learned model, facilitating multi-scale processing and cross-scale

interaction.
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Progressively coarse-to-fine training o

* First stage (Initialization): at the scale .S

Training the NNs with only the fitting loss Eé;%).

* Second stage: progressive refines the training from the scale .Sy to 0
Training the NNs at the scale s with the loss [,lgf) gt

* Final stage: tuning ar the scale 0
Training the NNs at scale 0 with only the fitting loss £f(.1?).

Iteration=1000 Iteration=1500

W
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Iteration=5000
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:c(l)[]I:(nl)] 2 O [1 0)] a:(o)[]IgJ)] GT image



Progressively coarse-to-fine training
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Final stage: tuning ar the scale 0

First stage (Initialization): at the scale .S
Training the NNs with only the fitting loss E(SO :

Training the NNs at scale 0 with only the fitting loss [,g?).

Second stage: progressive refines the training from the scale Sy to 0
Training the NNs at the scale s with the loss Eé I Vst

Ablation study on the croos scale and progressive training in terms of of PSNR/SSIM.

Category

Manmade

Natural

People

Saturated

Text

Average

Single-scale

w/o Progressive

22.04/0.803
20.36/0.742

25.93/0.890
23.91/0.829

30.33/0.933
26.35/0.821

17.68/0.688
17.22/0.675

24.76/0.886
22.88/0.857

24.14/0.840
22.14/0.790

Ours

23.24/0.893

26.27/0.933

31.53/0.944

17.76/0.683

27.01/0.930

25.16/0.879




PSNR results on blind uniform deblurring
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[Lai et al.’s Dataset]: 100 images categorized into five groups, and covers 4 different
kernels whose size ranges from 31 X 31 to 75 X 75.

Non-learning Supervised Self-Supervised Method

Wiaty | Tuisiek Ymgsll] NI S Mdfe DD WO g
Manmade | 19.32 19.99 17.39 17.87 20.35 22.14 23.06 23.24
Natural 23.69 24.33 20.53 2107 22.05 26.18 26.00 26.27
People 2711 27.22 22.85 23.15 25.94 31.25 31.02 31.53
Saturated | 16.46 17.04 15.35 15.58 16.35 18.43 17.21 17.76

Text 17.42 20.35 16.01 16.67 20.16 23.00 25.46 27.01
Average 19.89 21.79 18.42 18.89 20.97 24.29 24.55 25.16
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§> Vlsual results on bhnd umform deblumng [Lal Dataset]

Blurry Image MCEM [CVPR’23] Ours GT

» Visual results on real blurry image.

Blurry Image SelfDeblur[CVPR20] MCEM [CVPR’23] Ours
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Limitations and Future Work ";}-":x‘;F:ROCESSINGSYSTEMS

Limitation1: Computational cost for processing a large number of 1mages as
the method requires training the model for each individual sample.

Potential solution: Meta-learning or Testing-time adaptation.

Limitation2: Only applicable to handle uniform blurring, as it relies on the
convolution model.

Future work: Extending this approach to handle non-uniform blur.
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Thank you for your attention!



