

Cross-Scale Self-Supervised Blind Image Deblurring via Implicit Neural Representation

Tianjing Zhang¹, Yuhui Quan², Hui Ji¹

¹ Department of Mathematics, National University of Singapore

² School of Computer Science and Engineering, South China University of Technology

Background

• Uniform blurring, usually can be described as the convolution:

$$oldsymbol{y} = oldsymbol{k} \otimes oldsymbol{x} + oldsymbol{n}$$

• Blind image deblurring (BID): $y \longrightarrow (k, x)$

• Challenge: solution ambiguity: $y = k \otimes x = \delta \otimes y$

• DNN-based re-parametrization of latent $\boldsymbol{x}/\boldsymbol{k}$:

$$\boldsymbol{x} := \mathcal{G}_{\boldsymbol{x}}(\cdot; \Theta_{\boldsymbol{x}}) \quad \boldsymbol{k} := \mathcal{G}_{\boldsymbol{k}}(\cdot; \Theta_{\boldsymbol{k}})$$

• Standard self-supervised reconstruction loss:

$$\mathcal{L}_{sr}(\Theta_{m{k}},\Theta_{m{x}}):=||\mathcal{G}_{m{k}}(\cdot;\Theta_{m{k}})\otimes\mathcal{G}_{m{x}}(\cdot;\Theta_{m{x}})-m{y}||_2^2$$

• Challenge: Overfitting due to the lack of ground truth (GT) data.

$$\mathcal{G}_{\boldsymbol{x}}(\cdot;\hat{\Theta}_{\boldsymbol{x}}) \rightarrow \boldsymbol{y} \qquad \mathcal{G}_{\boldsymbol{k}}(\cdot;\hat{\Theta}_{\boldsymbol{k}}) \rightarrow \boldsymbol{\delta}$$

NEURAL INFORMATION PROCESSING SYSTEMS

Two key questions for self-supervised BID:

Q1: How to formulate a better self-supervised loss?

A1: A cross-scale loss function:

Leveraging the resolution-independent properties of Implicit Neural Representation (INR) for latent images/kernels.

Q2: How can we efficiently train the two NN generators to ensure accurate convergence to the latent images and kernels?

A2: A progressive coarse-to-fine scheme:

Enhancing training efficiency and ensuring the convergence to GT image/kernel.

• Without GT images, the only readily available loss function to train the generators is the fitting loss:

$$L_{\rm fit}(\Theta_{\boldsymbol{k}},\Theta_{\boldsymbol{x}}) = \mathcal{M}_f(\boldsymbol{y} - \boldsymbol{k} \otimes \boldsymbol{x}) = \mathcal{M}_{\rm fit}\Big(\Phi_{\boldsymbol{k}}(\mathbb{I}_{\boldsymbol{k}};\Theta_{\boldsymbol{k}}) \otimes \Phi_{\boldsymbol{x}}(\mathbb{I}_{\boldsymbol{x}};\Theta_{\boldsymbol{x}}), \boldsymbol{y}\Big)$$

where $\mathcal{M}_f(\cdot)$ is some distance metric.

• Such fitting loss clearly is not sufficient to resolve solution ambiguity!

NEURAL INFORMATION PROCESSING SYSTEMS

- To alleviate over-fitting, the down-sampled version of y, denoted as y_{\downarrow_s} for scale s, has often been used to initiate the blur kernel estimate.
- However, $(\boldsymbol{x} \otimes \boldsymbol{k}) \downarrow_2 \neq \boldsymbol{x} \downarrow_2 \otimes \boldsymbol{k} \downarrow_2$
- We present a cross-scale constraint that accurately characterizes the connection between (y, x, k) at different scales:

Proposition 1. For a kernel (filter) \mathbf{k} , let $\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3$ denote its associated QMF filters defined by $\mathbf{g}_1[m, n] = (-1)^m \mathbf{k}[m, n], \ \mathbf{g}_2[m, n] = (-1)^n \mathbf{k}[m, n], \ \mathbf{g}_3[m, n] = (-1)^{m+n} \mathbf{k}[m, n],$ for any $[m, n] \in \mathbb{I}_k$. Then, we have the following relation between consecutive two dyadic scales:

$$(oldsymbol{x}{\downarrow}_2)\otimes(oldsymbol{k}{\downarrow}_2)=rac{1}{4}ig((oldsymbol{x}\otimesoldsymbol{k}){\downarrow}_2+\sum_{d=1}^3(oldsymbol{x}\otimesoldsymbol{g}_d){\downarrow}_2ig).$$

Self-supervised cross-scale loss for BID

• We introduce a scale consistency loss across two consecutive scales: For each scale *s* :

$$\begin{split} L_{\text{cross}}^{(s)}(\Theta_{\boldsymbol{k}},\Theta_{\boldsymbol{x}}) &= \mathcal{M}_{c}\Big(4(\boldsymbol{x}^{(s)}\downarrow_{2})\otimes(\boldsymbol{k}^{(s)}\downarrow_{2}), (\boldsymbol{x}^{(s)}\otimes\boldsymbol{k}^{(s)})\downarrow_{2} + \sum_{1\leq d\leq 3}(\boldsymbol{x}^{(s)}\otimes\boldsymbol{g}_{d}^{(s)})\downarrow_{2}\Big) \\ &= \mathcal{M}_{c}\Big(4(\boldsymbol{x}^{(s+1)})\otimes(\boldsymbol{k}^{(s+1)}), (\boldsymbol{x}^{(s)}\otimes\boldsymbol{k}^{(s)})\downarrow_{2} + \sum_{1\leq d\leq 3}(\boldsymbol{x}^{(s)}\otimes\boldsymbol{g}_{d}^{(s)})\downarrow_{2}\Big) \end{split}$$

• Ablation study on the \mathcal{L}_{cross} in terms of of PSNR/SSIM.

Category	Manmade	Natural	People	Saturated	Text	Average
w/o \mathcal{L}_{cross}	21.19/0.778	25.84/0.887 3	0.74/0.918	17.69/0.682	26.75/0.917	24.44/0.836
Ours	23.24/0.893	26.27/0.933 3	1.53/0.944	17.76/0.683	27.01/0.930	25.16/0.879

The scale-consistency loss providing additional regularization for training two INR-based generators.

• The blur kernel and the latent image are re-parameterized by two INR models:

$$\begin{cases} \boldsymbol{k}[\mathbb{I}_{\boldsymbol{k}}] = \Phi_{\boldsymbol{k}}(\mathbb{I}_{\boldsymbol{k}};\Theta_{\boldsymbol{k}}) & : \quad \boldsymbol{k}[i,j] = \Phi_{\boldsymbol{k}}([i,j]), \ [i,j] \in \mathbb{I}_{\boldsymbol{k}}; \\ \boldsymbol{x}[\mathbb{I}_{\boldsymbol{x}}] = \Phi_{\boldsymbol{x}}(\mathbb{I}_{\boldsymbol{x}};\Theta_{\boldsymbol{x}}) & : \quad \boldsymbol{x}[i,j] = \Phi_{\boldsymbol{x}}([i,j]), \ [i,j] \in \mathbb{I}_{\boldsymbol{x}}, \end{cases}$$

 Let k⁽⁰⁾ = k, x⁽⁰⁾ = x denotes the original scale, we can form both the kernel and the image in a dyadic pyramid:

$$\boldsymbol{k}^{(s)} = (\boldsymbol{k}^{(s-1)}) \downarrow_2$$
 and $\boldsymbol{x}^{(s)} = (\boldsymbol{x}^{(s-1)}) \downarrow_2$, for $1 \le s \le S_0$.

• INR enables the model to generate the prediction with higher/lower resolutions from the same learned model, facilitating multi-scale processing and cross-scale interaction.

- First stage (Initialization): at the scale S_0 Training the NNs with only the fitting loss $\mathcal{L}_{\text{fit}}^{(S_0)}$.
- Second stage: progressive refines the training from the scale S_0 to 0 Training the NNs at the scale *s* with the loss $\mathcal{L}_{fit}^{(s)} + \lambda \mathcal{L}_{cross}^{(s)}$.
- Final stage: tuning ar the scale 0

Training the NNs at scale 0 with only the fitting loss $\mathcal{L}_{fit}^{(0)}$.

OCESSING SVS

- First stage (Initialization): at the scale S_0 Training the NNs with only the fitting loss $\mathcal{L}_{fit}^{(S_0)}$.
- Second stage: progressive refines the training from the scale S_0 to 0 Training the NNs at the scale *s* with the loss $\mathcal{L}_{\text{fit}}^{(s)} + \lambda \mathcal{L}_{\text{cross}}^{(s)}$.
- Final stage: tuning ar the scale 0

Training the NNs at scale 0 with only the fitting loss $\mathcal{L}_{fit}^{(0)}$.

• Ablation study on the croos scale and progressive training in terms of of PSNR/SSIM.

Category	Manmade	Natural	People	Saturated	Text	Average
Single-scale w/o Progressive	22.04/0.803 20.36/0.742	25.93/0.890 23.91/0.829	30.33/0.933 26.35/0.821	17.68/0.688 17.22/0.675	24.76/0.886 22.88/0.857	24.14/0.840 22.14/0.790
Ours	23.24/0.893	26.27/0.933	31.53/0.944	17.76/0.683	27.01/0.930	25.16/0.879

PSNR results on blind uniform deblurring

- NEURAL INFORMATION PROCESSING SYSTEMS
- [Lai et al.'s Dataset]: 100 images categorized into five groups, and covers 4 different kernels whose size ranges from 31 × 31 to 75 × 75.

	Non-le	arning	ng Supervised		Self-Supervised Method			
Methods	Yan et al. [CVPR'17]	Yang &Ji [CVPR'19]	MPRNet [CVPR'21]	Restormer [CVPR'22]	SelfDeblur [CVPR'20]	DEBID [TCSVT'23]	MCEM [CVPR'23]	Ours
Manmade	19.32	19.99	17.39	17.87	20.35	22.14	23.06	23.24
Natural	23.69	24.33	20.53	21.07	22.05	26.18	26.00	26.27
People	27.01	27.22	22.85	23.15	25.94	31.25	31.02	31.53
Saturated	16.46	17.04	15.35	15.58	16.35	18.43	17.21	17.76
Text	17.42	20.35	16.01	16.67	20.16	23.00	25.46	27.01
Average	19.89	21.79	18.42	18.89	20.97	24.29	24.55	25.16

Visual Results

➢ Visual results on blind uniform deblurring [Lai Dataset].

Blurry Image

MCEM [CVPR'23]

Ours

GT

\succ Visual results on real blurry image.

Limitation1: Computational cost for processing a large number of images as the method requires training the model for each individual sample.
Potential solution: Meta-learning or Testing-time adaptation.

Limitation2: Only applicable to handle uniform blurring, as it relies on the convolution model.

Future work: Extending this approach to handle non-uniform blur.

Thank you for your attention!