

Fast Proxy Experiment Design for Causal Effect Identification

Sepehr Elahi¹, Sina Akbari¹, Jalal Etesami², Negar Kiyavash¹, Patrick Thiran¹

¹ EPFL, Switzerland ² TUM, Germany

• Goal: Estimate the causal effect of a treatment on an outcome.

- **Goal:** Estimate the causal effect of a treatment on an outcome.
- Often impossible with observational data \implies need for interventions.

- **Goal:** Estimate the causal effect of a treatment on an outcome.
- Often impossible with observational data \implies need for interventions.
- Cannot intervene on all variables \implies need for proxy experiments.

- **Goal:** Estimate the causal effect of a treatment on an outcome.
- Often impossible with observational data \implies need for interventions.
- Cannot intervene on all variables \implies need for proxy experiments.

X (treatment): Smoking Y (outcome): Lung cancer W (proxy): Tax on cigarettes

- **Goal:** Estimate the causal effect of a treatment on an outcome.
- Often impossible with observational data \implies need for interventions.
- Cannot intervene on all variables \implies need for proxy experiments.

X (treatment): Smoking Y (outcome): Lung cancer W (proxy): Tax on cigarettes

The goal is to find min-cost interventions such that given the interventions, the causal effect of interest is identified.

 $\mathcal{I}^* \in \operatorname*{argmin}_{\mathcal{I} \in 2^{2^{\mathcal{V}}}} \mathcal{C}(\mathcal{I}), \quad \text{s.t.}$

The goal is to find min-cost interventions such that given the interventions, the causal effect of interest is identified.

 $\mathcal{I}^* \in \operatorname*{argmin}_{\mathcal{I} \in 2^{2^{\mathcal{V}}}} \mathcal{C}(\mathcal{I}), \quad \text{s.t.}$

 $\exists functional f(\cdot) : \mathbb{P}_{X}(Y) = f(\{\mathbb{P}_{\mathcal{I}}\}_{\mathcal{I} \in \boldsymbol{\mathcal{I}}}).$

The goal is to find min-cost interventions such that given the interventions, the causal effect of interest is identified.

 $\mathcal{I}^* \in \operatorname*{argmin}_{\mathcal{I} \in 2^{2^{\mathcal{V}}}} \mathcal{C}(\mathcal{I}), \quad \text{s.t.}$

$$\exists \text{ functional } f(\cdot) : \mathbb{P}_X(Y) = f(\{\mathbb{P}_\mathcal{I}\}_{\mathcal{I} \in \boldsymbol{\mathcal{I}}}).$$

At least as hard as: The weighted minimum-hitting set problem.

The goal is to find min-cost interventions such that given the interventions, the causal effect of interest is identified.

 $\mathcal{I}^* \in \operatorname*{argmin}_{\mathcal{I} \in 2^{2^{\mathcal{V}}}} \mathcal{C}(\mathcal{I}), \quad \text{s.t.}$

$$\exists \text{ functional } f(\cdot) : \mathbb{P}_X(Y) = f(\{\mathbb{P}_\mathcal{I}\}_{\mathcal{I} \in \boldsymbol{\mathcal{I}}}).$$

At least as hard as: The weighted minimum-hitting set problem.

So the min-cost ID problem is **NP-hard!** \implies impossible to solve in polynomial time.

Solving the MCID problem: old approach

• Previous s.o.t.a. [Akbari et al., 2022] required exponential many calls to an exponential-time algorithm!

Solving the MCID problem: old approach

• Previous s.o.t.a. [Akbari et al., 2022] required exponential many calls to an exponential-time algorithm!

extremely slow in practice!

Solving the MCID problem: our approach

• Reformulated MCID as SAT and ILP problems.

Solving the MCID problem: our approach

- Reformulated MCID as SAT and ILP problems.
- Used well-studied and highly optimized solvers (e.g., RC2 with Glucose, Gurobi).

Solving the MCID problem: our approach

- Reformulated MCID as SAT and ILP problems.
- Used well-studied and highly optimized solvers (e.g., RC2 with Glucose, Gurobi).

Adjustment criterion: a set Z s.t.:

$$\mathbb{P}_{X}(Y) = \mathbb{E}_{\mathbb{P}}[\mathbb{P}(Y \mid X, Z)],$$

i.e., the identification functional f is an expectation.

Adjustment criterion: a set Z s.t.:

 $\mathbb{P}_{X}(Y) = \mathbb{E}_{\mathbb{P}}[\mathbb{P}(Y \mid X, Z)],$

i.e., the identification functional f is an expectation.

Generalized adjustment criterion: a pair (\mathcal{I}, Z) s.t.:

 $\mathbb{P}_{X}(Y) = \mathbb{E}_{\mathbb{P}_{\mathcal{I}}}[\mathbb{P}_{\mathcal{I}}(Y \mid X, Z)].$

Adjustment criterion: a set Z s.t.:

 $\mathbb{P}_{X}(Y) = \mathbb{E}_{\mathbb{P}}[\mathbb{P}(Y \mid X, Z)],$

i.e., the identification functional f is an expectation.

Generalized adjustment criterion: a pair (\mathcal{I}, Z) s.t.:

 $\mathbb{P}_{X}(Y) = \mathbb{E}_{\mathbb{P}_{\mathcal{I}}}[\mathbb{P}_{\mathcal{I}}(Y \mid X, Z)].$

Reminder - MCID problem:

 $\mathcal{I}^* \in \operatorname*{argmin}_{\mathcal{I} \in 2^{\mathcal{V}}} \mathcal{C}(\mathcal{I}), \quad \text{s.t.} \quad \exists \text{ functional } f(\cdot) : \mathbb{P}_X(\mathcal{V}) = f(\{\mathbb{P}_{\mathcal{I}}\}_{\mathcal{I} \in \mathcal{I}}).$

Adjustment criterion: a set Z s.t.:

 $\mathbb{P}_{X}(Y) = \mathbb{E}_{\mathbb{P}}[\mathbb{P}(Y \mid X, Z)],$

i.e., the identification functional f is an expectation.

Generalized adjustment criterion: a pair (\mathcal{I}, Z) s.t.:

 $\mathbb{P}_{X}(Y) = \mathbb{E}_{\mathbb{P}_{\mathcal{I}}}[\mathbb{P}_{\mathcal{I}}(Y \mid X, Z)].$

Reminder - MCID problem:

 $\mathcal{I}^* \in \operatorname*{argmin}_{\mathcal{I} \in 2^{V}} \mathcal{C}(\mathcal{I}), \quad \text{s.t.} \quad \exists \text{ functional } f(\cdot) : \mathbb{P}_{X}(Y) = f(\{\mathbb{P}_{\mathcal{I}}\}_{\mathcal{I} \in \mathcal{I}}).$

Surrogate problem: $\mathcal{I}^* \in \operatorname{argmin}_{\mathcal{I} \in 2^V} \mathcal{C}(\mathcal{I})$ s.t. $\mathbb{P}_{\mathcal{X}}(\mathcal{Y}) = \mathbb{E}_{\mathbb{P}_{\mathcal{I}}}[\mathbb{P}_{\mathcal{I}}(\mathcal{Y} \mid \mathcal{X}, \mathcal{Z})]$ for some \mathcal{Z} .

Adjustment criterion: a set Z s.t.:

 $\mathbb{P}_{X}(Y) = \mathbb{E}_{\mathbb{P}}[\mathbb{P}(Y \mid X, Z)],$

i.e., the identification functional f is an expectation.

Generalized adjustment criterion: a pair (\mathcal{I}, Z) s.t.:

 $\mathbb{P}_{X}(Y) = \mathbb{E}_{\mathbb{P}_{\mathcal{I}}}[\mathbb{P}_{\mathcal{I}}(Y \mid X, Z)].$

Reminder - MCID problem:

 $\mathcal{I}^* \in \operatorname*{argmin}_{\mathcal{I} \in 2^{V}} \mathcal{C}(\mathcal{I}), \quad \text{s.t.} \quad \exists \text{ functional } f(\cdot) : \mathbb{P}_{X}(Y) = f(\{\mathbb{P}_{\mathcal{I}}\}_{\mathcal{I} \in \mathcal{I}}).$

Surrogate problem: $\mathcal{I}^* \in \operatorname{argmin}_{\mathcal{I} \in 2^V} \mathcal{C}(\mathcal{I})$ s.t. $\mathbb{P}_{\mathcal{X}}(\mathcal{Y}) = \mathbb{E}_{\mathbb{P}_{\mathcal{I}}}[\mathbb{P}_{\mathcal{I}}(\mathcal{Y} \mid \mathcal{X}, \mathcal{Z})]$ for some \mathcal{Z} .

This special case is solvable in **polynomial time**!

Fast Proxy Experiment Design for Causal Effect Identification

Sepehr Elahi & Sina Akbari

• Solution to surrogate problem is a feasible solution to the MCID problem.

- Solution to surrogate problem is a feasible solution to the MCID problem.
- Surrogate problem is solvable in polynomial time \implies can be used as an efficient heuristic.

- Solution to surrogate problem is a feasible solution to the MCID problem.
- Surrogate problem is solvable in polynomial time \implies can be used as an efficient heuristic.

Future direction

• Design of efficient approximation algorithms with theoretical guarantees.

Future direction

- Design of efficient approximation algorithms with theoretical guarantees.
- Finite sample considerations.

Future direction

- Design of efficient approximation algorithms with theoretical guarantees.
- Finite sample considerations.

Thank you for listening!