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Motivation

• Goal: Estimate the causal effect of a treatment on an outcome.

• Often impossible with observational data =⇒ need for interventions.
• Cannot intervene on all variables =⇒ need for proxy experiments.
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Min-cost intervention for causal effect
identification (MCID)

The goal is to find min-cost interventions such that given the interventions, the
causal effect of interest is identified.

I∗ ∈ argmin
I∈22V

C(I), s.t.

∃ functional f(·) : PX(Y) = f({PI}I∈I).

At least as hard as: The weighted minimum-hitting set problem.

So the min-cost ID problem is NP-hard! =⇒ impossible to solve in polynomial time.
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Solving the MCID problem: old approach

• Previous s.o.t.a. [Akbari et al., 2022] required exponential many calls to an
exponential-time algorithm!

extremely slow in practice!
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Solving the MCID problem: our approach

• Reformulated MCID as SAT and ILP problems.

• Used well-studied and highly optimized solvers (e.g., RC2 with Glucose, Gurobi).
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Proxy experiments for adjustment criterion

Adjustment criterion: a set Z s.t.:

PX(Y) = EP[P(Y | X, Z)],
i.e., the identification functional f is an expectation.

Generalized adjustment criterion: a pair (I, Z) s.t.:
PX(Y) = EPI [PI(Y | X, Z)].

Reminder – MCID problem:

I∗ ∈ argmin
I∈2V

C(I), s.t. ∃ functional f(·) : PX(Y) = f({PI}I∈I).

Surrogate problem: I∗ ∈ argminI∈2V C(I) s.t. PX(Y) = EPI [PI(Y | X, Z)] for some Z.

This special case is solvable in polynomial time!
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Proxy experiments for adjustment criterion

• Solution to surrogate problem is a feasible solution to the MCID problem.

• Surrogate problem is solvable in polynomial time =⇒ can be used as an
efficient heuristic.
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Future direction

• Design of efficient approximation algorithms with theoretical guarantees.

• Finite sample considerations.

Thank you for listening!
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