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Return: Cumulative Rewards

Zπ =
∑∞

t=0 γ
tRt
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A Fundamental Problem: Value Function?

▶ Classical RL learns value function, the expectation of returns:

Qπ(s, a) = E [Zπ(s, a)]

= E

[ ∞∑
t=0

γtR(st, at)|s0 = s, a0 = a

]

▶ Distributional RL learns the whole distribution of returns:

D(Zπ(s, a))

where D extracts the distribution of a random variable.

Ke Sun (University of Alberta) 2024 4/39



A Fundamental Problem: Value Function?

▶ Classical RL learns value function, the expectation of returns:

Qπ(s, a) = E [Zπ(s, a)]

= E

[ ∞∑
t=0

γtR(st, at)|s0 = s, a0 = a

]
▶ Distributional RL learns the whole distribution of returns:

D(Zπ(s, a))

where D extracts the distribution of a random variable.

Ke Sun (University of Alberta) 2024 4/39



Distributional Learning: Beyond Expectation

Ke Sun (University of Alberta) 2024 5/39



Performance Improvement of Distributional RL

Classical RL vs Distributional RL

Atari Games
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Distributional RL: A Well-Defined RL Area

▶ Classical RL: Classical Bellman operator T π is defined as

T πQ(s, a) = E[R(s, a)] + γEs′∼p,π
[
Q
(
s′, a′

)]
, (1)

where T π is a γ-contractive operator.

▶ Distributional RL: Distributional Bellman operator Tπ is de-
fined as

TπZ(s, a) :D
= R(s, a) + γZ

(
s′, a′

)
, (2)

where Tπ is a contractive operator under some proper distribution
divergence / statistical distances, e.g., Wasserstein distance.

▶ Two key factors in Distributional RL:
① How to parameterize Zπ?
② How to choose the statistical distance?

Ke Sun (University of Alberta) 2024 7/39



Distributional RL: A Well-Defined RL Area

▶ Classical RL: Classical Bellman operator T π is defined as

T πQ(s, a) = E[R(s, a)] + γEs′∼p,π
[
Q
(
s′, a′

)]
, (1)

where T π is a γ-contractive operator.
▶ Distributional RL: Distributional Bellman operator Tπ is de-

fined as
TπZ(s, a) :D

= R(s, a) + γZ
(
s′, a′

)
, (2)

where Tπ is a contractive operator under some proper distribution
divergence / statistical distances, e.g., Wasserstein distance.

▶ Two key factors in Distributional RL:
① How to parameterize Zπ?
② How to choose the statistical distance?

Ke Sun (University of Alberta) 2024 7/39



Distributional RL: A Well-Defined RL Area

▶ Classical RL: Classical Bellman operator T π is defined as

T πQ(s, a) = E[R(s, a)] + γEs′∼p,π
[
Q
(
s′, a′

)]
, (1)

where T π is a γ-contractive operator.
▶ Distributional RL: Distributional Bellman operator Tπ is de-

fined as
TπZ(s, a) :D

= R(s, a) + γZ
(
s′, a′

)
, (2)

where Tπ is a contractive operator under some proper distribution
divergence / statistical distances, e.g., Wasserstein distance.

▶ Two key factors in Distributional RL:
① How to parameterize Zπ?
② How to choose the statistical distance?

Ke Sun (University of Alberta) 2024 7/39



Outline

Introduction
Preliminary
Motivation
Our Contribution

Distributional RL with Sinkhorn Divergence
Sinkhorn Divergence
Contraction Properties under Sinkhorn Divergence
Extension to Multi-dimensional Return
Algorithm

Experiments

Conclusion

Ke Sun (University of Alberta) 2024 8/39



Existing Algorithms
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Two Limitations of Existing Algorithms

① Inaccuracy in Capturing Return Distribution Characteristics
▶ Non-crossing issue of learned quantile curves
▶ Restricted expressiveness of pre-specified statistics

② Difficulties in Extension to Multi-dimensional Rewards
▶ Many RL tasks learn a multi-dimensional return distribution

▶ multi-source rewards
▶ hybrid reward architecture
▶ sub-reward architecture

▶ Difficult to extend existing algorithms to multi-dimensional setting
▶ multi-dimensional categorical representation?
▶ multi-dimensional quantile regression?
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Our Contribution

▶ Algorithm. We introduce a new distributional RL algorithm based
on Sinkhorn divergence, a regularized Wasserstein loss.

▶ Theory. We prove the contraction properties of Bellman opera-
tors under Sinkhorn divergence, revealing an interpolation rela-
tionship between Wasserstein distance and MMD.

▶ Experiments. We conduct extensive experiments over 55 Atari
games, investigating
▶ superiority in multi-dimensional reward setting
▶ Comprehensive comparison with existing algorithms
▶ Sensitivity analysis and computational cost
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Popular Statistical Distances
▶ Optimal Transport

Wc = inf
Π∈Π(µ,ν)

∫
c(x, y)dΠ(x, y), (3)

where the minimizer Π∗ is called the optimal transport plan or
optimal coupling.

▶ p-Wasserstein Distance

Wp =

(
inf

Π∈Π(µ,ν)

∫
∥x − y∥pdΠ(x, y)

)1/p

. (4)

▶ Maximum Mean Discrepancy (MMD)

MMD2
k = E

[
k
(
X,X′)]+ E

[
k
(
Y,Y ′)]− 2E [k(X,Y)] , (5)

where k(·, ·) is a continuous kernel and X′ (resp. Y ′) is a random
variable independent of X (resp. Y).

Ke Sun (University of Alberta) 2024 14/39



Sinkhorn Divergence

▶ Sinkhorn divergence is an entropic regularized Wasserstein dis-
tance. We first define Wc,ε(µ, ν) as

Wc,ε(µ, ν) = min
Π∈Π(µ,ν)

∫
c(x, y)dΠ(x, y) + εKL(Π|µ⊗ ν),

(6)
where the regularization KL(Π|µ⊗ν) =

∫
log

(
Π(x,y)

dµ(x)dν(y)

)
dΠ(x, y),

is also known as mutual information.
▶ Sinkhorn divergence Wc,ε is defined as

Wc,ε(µ, ν) = 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν). (7)
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Benefits and Regularization Effect

① Addressing Limitation 1: Efficient approximation of a multi-
dimensional Wasserstein distance

② Addressing Limitation 2: Leveraging samples, un-restricted statis-
tics, to represent return distributions

③ Regularization Effects
▶ “Smoother” transport plan
▶ Maximum entropy principle
▶ Stable optimization: strongly convexity and smoothness
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Smoother Transport Plan
▶ Recap. Regularized Wasserstein distance:

Wc,ε(µ, ν) = min
Π∈Π(µ,ν)

∫
c(x, y)dΠ(x, y) + εKL(Π|µ⊗ ν) (8)
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Basic Contraction Properties

The contraction analysis of Tπ depends on two properties of the statis-
tical distance dp.

Contraction Properties of statistical distance dp

① Scale Sensitive (S):

dp(aX, aY) ≤ |a|τdp(X,Y), (9)

where τ > 0.

② Sum Invariant (I):

dp(A + X,A + Y) ≤ dp(X,Y), (10)

where the random variable A is independent of X and Y .
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Contraction Property of Regularization

▶ Recap. Regularized Wasserstein distance:

Wc,ε(µ, ν) = min
Π∈Π(µ,ν)

∫
c(x, y)dΠ(x, y) + εKL(Π|µ⊗ ν)

(11)
▶ Given a joint distribution Π, we define the supremal form of the

regularization term:

MI∞Π (µ, ν) = sup
(s,a)∈S×A

KL(Π|µ(s, a)⊗ ν(s, a)) (12)

Proposition 1. Contraction under MI∞Π (µ, ν).

The distributional Bellman operator Tπ is non-expansive under MI∞Π
for any non-trivial joint distribution Π.
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Contraction Property of Wc,ε

Two Basic Contraction Properties of Wc,ε

Considering Wc,ε with the unrectified kernel kα := −∥x − y∥α as −c
(α > 0) and a scaling factor a ∈ (0, 1), we have:
▶ (I) Wc,ε is sum-invariant
▶ (S) Wc,ε(aµ, aν) ≤ ∆ε(a, α)Wc,ε(µ, ν) ,

with a scaling constant ∆ε(a, α) ∈ (|a|α, 1) for any µ and ν in a
finite set of probability measures.

Remark. The scaling factor ∆ε(a, α) has no explicit form, but it is
determined by the scale factor a, the order α, the hyperparameter ε,
and the set of interested probability distributions.
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Contraction Property of Wc,ε
▶ We consider the supremal form of statistical distance.

W∞
c,ε(µ, ν) = sup

(s,a)∈S×A
Wc,ε(µ(s, a), ν(s, a)). (13)

Thm 1. Contraction under Wc,ε and Interpolation Relationship.

Considering Wc,ε(µ, ν) with an unrectified kernel kα := −∥x − y∥α
as −c (α > 0), where µ, ν ∈ the distribution set of {Zπ(s, a)} for
s ∈ S, a ∈ A in a finite MDP. Then, we have:

① (ε → 0) Wc,ε(µ, ν) → 2Wα
α (µ, ν). When ε = 0, Tπ is γα-

contractive under W∞
c,ε.

② (ε → +∞) Wc,ε(µ, ν) → MMD2
kα(µ, ν). When ε = +∞, Tπ is

γα-contractive under W∞
c,ε.

③ (ε ∈ (0,+∞)) Tπ is at least ∆ε(γ, α)-contractive under W∞
c,ε,

where ∆ε(γ, α) ∈ (γα, 1) is an MDP-dependent constant.
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A Brief Summary

▶ Interpolation Property. Sinkhorn divergence interpolates be-
tween Wasserstein distance and MMD by varying ϵ.
⇒ Contraction of Tπ in distributional RL !

▶ Consistency with Existing Contraction Conclusions.
▶ QR-DQN with contraction guarantee under Wasserstein distance
▶ MMD-DQN with contraction guarantee under MMD if

1. Unrectified kernel (energy distance or Cramer distance)
2. Gaussian kernel: no contraction guarantee...
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Extension to Multi-dimensional Return

▶ We define a d-dimensional reward function R : S ×A → P(Rd).
▶ We have a d-dimensional return vector Zπ(s, a) =

∑∞
t=0 γ

tR(st, at),
with Zπ(s, a) = (Zπ

1 (s, a), · · · ,Zπ
d (s, a))⊤.

▶ The joint distributional Bellman operator Tπ
d is defined as

Tπ
d Z(s, a) :D

= R(s, a) + γZ
(
s′, a′

)
Corollary 1.

For two joint distributions Z1 and Z2, Tπ
d is ∆ε(γ, α)-contractive

under W∞
c,ε, i.e.,

W∞
c,ε(T

πZ1,T
πZ2) ≤ ∆ε(γ, α)W

∞
c,ε(Z1,Z2). (14)
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Generic Algorithm Update

Two key factors in distributional RL:
▶ Samples to represent the return distribution
▶ Sinkhorn divergence as the statistical distance

Wc,ε(Zθ(s, a),TπZθ(s, a))
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Sinkhorn Iteration: Approximation
Sinkhorn Iteration with L steps for approximation
▶ Differentiable and Efficient, e.g., matrix-vector multiplication
▶ Approximation guarantee with a linear rate
▶ Easy to implement: adding extra differential layers in existing

network architecture
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Experiment Setting

▶ Environments:
55 Atari Games

▶ Algorithms:
▶ DQN
▶ C51
▶ QR-DQN
▶ MMD-DQN
▶ SinkhornDRL (ours)

▶ The unrectified kernel
kα := −∥x − y∥α in
SinkhornDRL (consistent
with Theorem 1)

Atari Games
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Comparison with Existing Algorithms

Evaluation Metric: Human Normalized Score (HNS)
▶ Mean
▶ Median
▶ Interquartile Mean (%)
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Ratio Improvement Analysis across All Games
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Sensitivity Analysis and Computational Cost

▶ Sensitivity Analysis

▶ Computational Cost. SinkhornDRL improves performance over
baselines at the cost of slightly increasing computational burden.
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Multi-Dimensional Reward Functions

▶ Reward Decomposition. We decompose the scalar-based re-
wards to multi-dimensional vectors based on the respective re-
ward structures.

▶ Algorithms.
① SinkhornDRL
② MMD-DQN
③ Multi-dimensional Quantile Regression DQN? (not clear)

Ke Sun (University of Alberta) 2024 35/39



Outline

Introduction
Preliminary
Motivation
Our Contribution

Distributional RL with Sinkhorn Divergence
Sinkhorn Divergence
Contraction Properties under Sinkhorn Divergence
Extension to Multi-dimensional Return
Algorithm

Experiments

Conclusion

Ke Sun (University of Alberta) 2024 36/39



Conclusion: Take-away Messages

① Sinkhorn divergence can efficiently approximate a multi-dimensional
Wasserstein distance by introducing an entropic regularization,
interpolation between Wasserstein distance and MMD.

② Distributional RL under Sinkhorn divergence can also guarantee
a contraction with an MDP-dependent contraction factor.

③ Distributional RL with Sinkhorn divergence can
▶ Address two major limitations: unrestricted distribution represen-

tation and extension to multi-dimensional reward setting
▶ Regularization effect: “smoother” transport plan and stable opti-

mization
▶ Competitive performance in extensive experiments
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Open Problems and Future Work

① The gap exists between theoretical properties of statistical dis-
tances and performance in RL environments.

② It lacks a quantitative criterion to recommend in choosing an RL
algorithm, given an environment.

③ Connection and discrepancy between generative models and dis-
tributional RL.
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Thank You!
Questions?
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