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Background
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Cross-task Generalization
 Develop models capable of effectively transferring knowledge across a diverse range of tasks. This 

involves training on a set of tasks (meta-train phase) and evaluating the model's ability to perform on 
unseen tasks (meta-test phase).

Challenges
 Traditional instance training methods require extensive task-specific data , limiting adaptability in real-

world scenarios. 
 The need to process instructions repeatedly for the same task (all need to concatenate the task 

description and demostrations) leads to high computational costs. 

Can we mimic the way humans understand and follow instruction descriptions 
when learning new skills and tasks to assist in solving new problems?



Instruction Learning
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Instruction Learning: By learning from instructions, a class of tasks is treated as a whole, allowing for a 
higher-level understanding of instructions and the ability to address problems effectively.

 The hypernetwork automatically 
transform instructions and 
demostrations into efficient and 
lightweight task adapters, 
seamlessly integrating them into 
LLMs.

 Knowledge distillation reinforces 
generated adapters’ consistency 
with task-specific models 
developed through instance 
training.



Comparison of TAGI and Baselines
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 Instruction Fusion: TAGI incorporates instruction fusion, allowing dynamic interaction between inputs and
instructions, enriching the model's understanding and enhancing performance on unseen tasks.

 Low Inference Cost: TAGI processes task instructions only once, significantly reducing computational overhead
during inference, especially beneficial as the number of samples or instruction length increases.

 Update with Low Parameters: TAGI requires minimal parameter updates, leveraging a hypernetwork to generate
task-specific adapters.

 PreTraining: TAGI benefits from pretraining, which enhances the model's ability to comprehend and execute task
instructions effectively.

 Perform Unseen Tasks Well: TAGI is designed to learn and perform well on unseen tasks.



TAGI Architecture
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 Hypernetwork Pretraining: Pretrains the hypernetwork on standard text data to enhance its ability to recognize and 
respond to instructions. 

 Hypernetwork Finetuning (Distillation and Alignment): Finetunes the hypernetwork on meta-training tasks to learn the 
generation of optimal parameters from task instructions. Utilizes knowledge distillation to align the task-specific model 
(acting as the teacher) with the vanilla LLM combined with the generated task adapters (acting as the student).

Instruction fusion:

LoRA Generation:



Main Results: SNI

6

RougeL results on Super-Natural Instructions (SNI). The best results are in bold, while the second-best are 
underlined. The Average Relative FLOPs cost is calculated relative to Tk-Instruct. We use the number of FLOPs 
required by each model to process one task (containing 100 examples).



Main Results: P3
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Average accuracy results over T0 evaluation tasks after training on the T0 P3 train set. Our method uses only 
template inputs without demonstrations yet achieves competitive performance with ICL-based methods using 16 
shots, with much-reduced inference overhead. The Average Relative Inference Time is calculated relative to the 
Metatrain. We use  the inference time required by each model to process all 11 test tasks with batch\_size of 1.



Ablation Results
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The performance of different numbers of meta-training tasks.

Ablation Study: Demonstrate that the inclusion of 
pretraining, instruction fusion, and alignment are 
crucial for enhancing cross-task generalization, with 
each component significantly contributing to the 
model's overall efficacy, leading to a 5% improvement 
over baselines in cross-task performance.
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