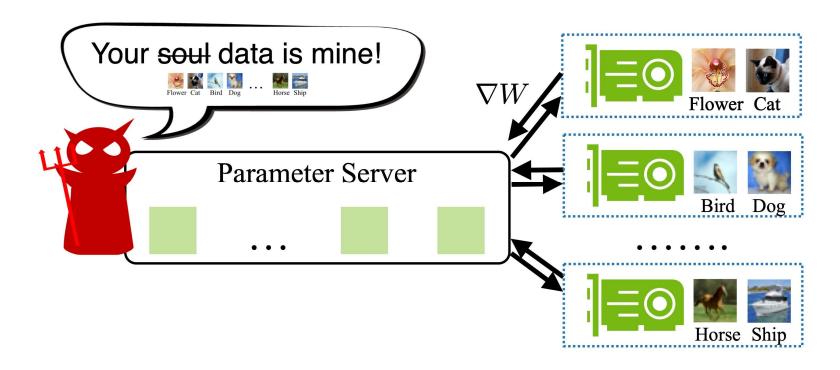
DAGER: Exact Gradient Inversion for Large Language Models



NeurIPS 2024 page:

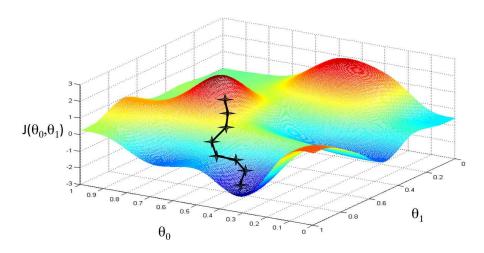
Gradient Inversion

LLMs (and transformers) in Federated Learning

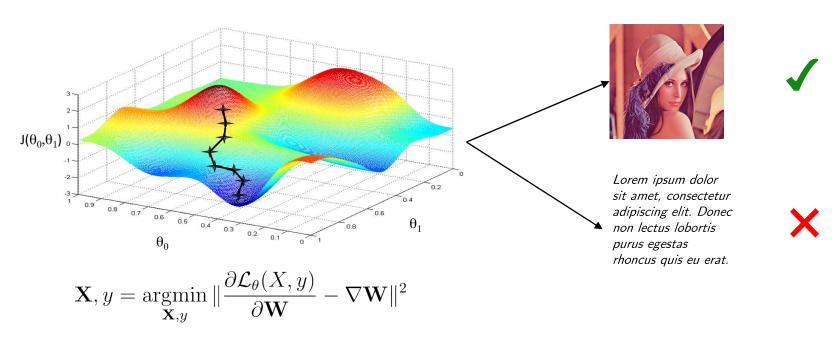
LLMs are becoming increasingly popular (and powerful!)

Uses of LLMs in FL include:

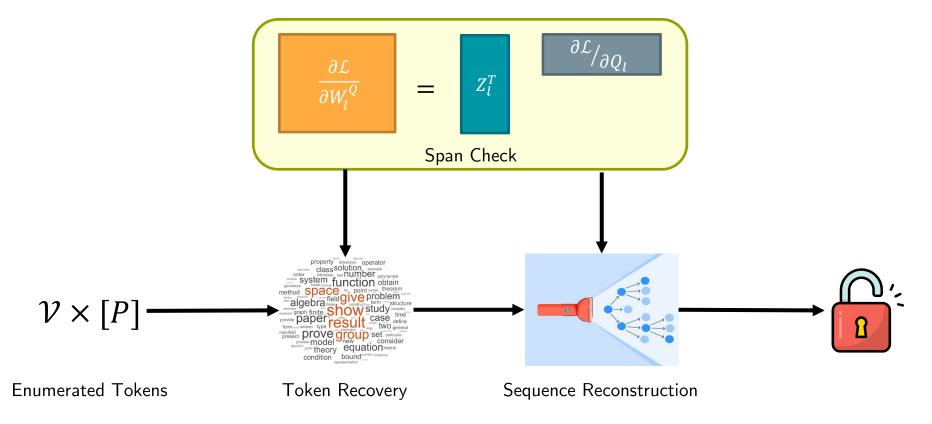
- Keyboard suggestions
- Fraud detection
- Healthcare diagnostics
- Legal Document Analysis



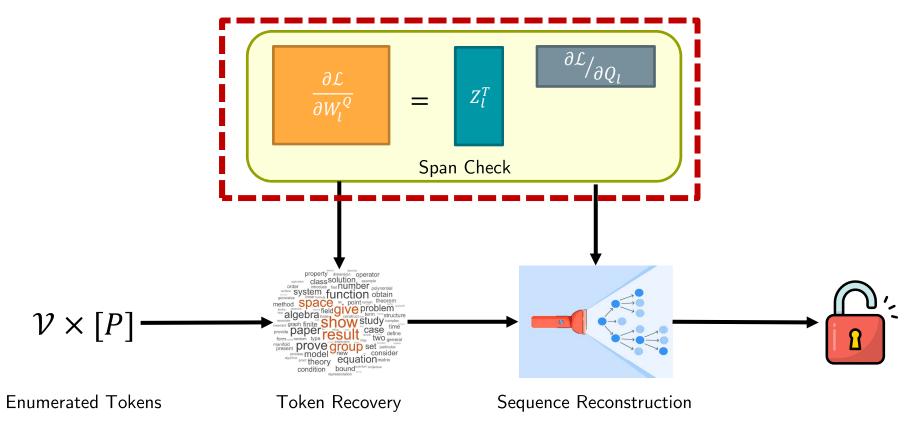
Gradient Inversion – Prior Work


State-of-the-art attacks utilize a continuous optimization approach

$$\mathbf{X}, y = \underset{\mathbf{X}, y}{\operatorname{argmin}} \| \frac{\partial \mathcal{L}_{\theta}(X, y)}{\partial \mathbf{W}} - \nabla \mathbf{W} \|^{2}$$

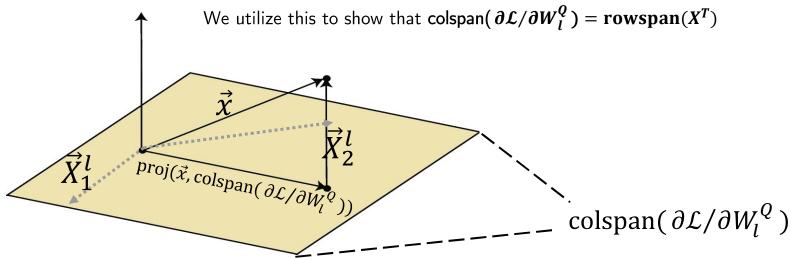

Gradient Inversion – Prior Work

State-of-the-art attacks utilize a continuous optimization approach

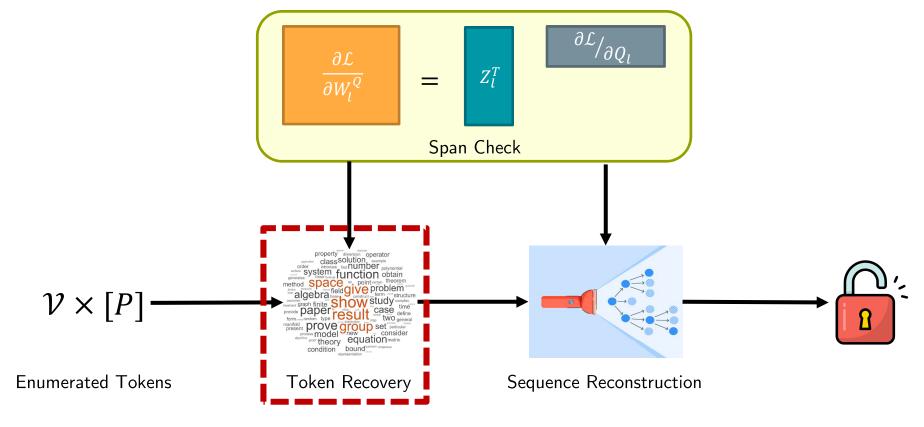


5

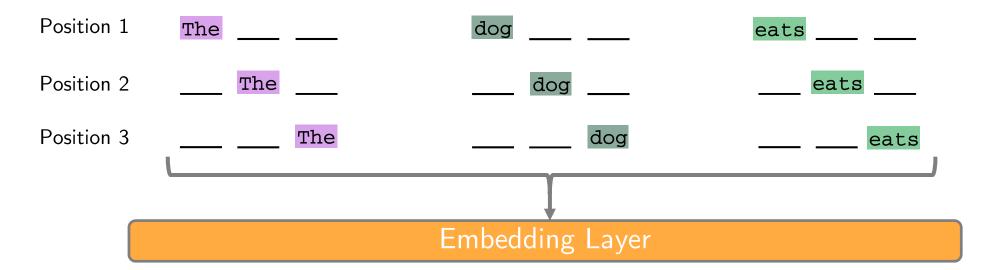
The DAGER Pipeline


The DAGER Pipeline

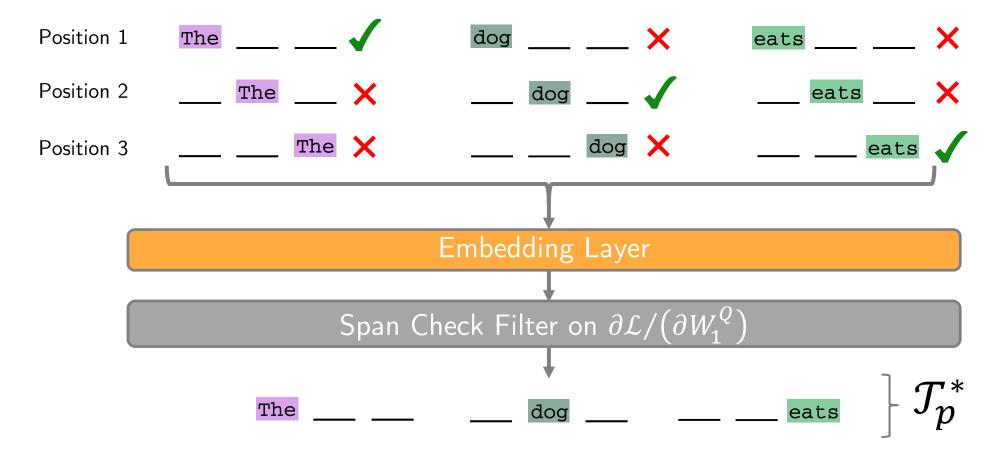
The Span Check Filter

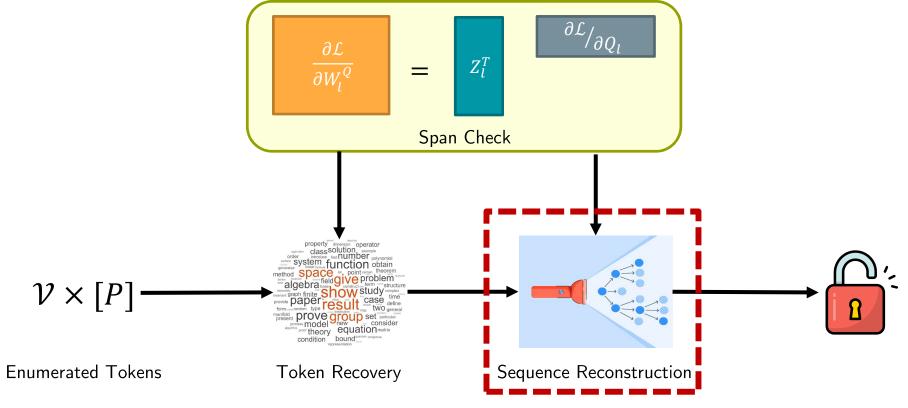

Dimitrov et al. [1] showed that for a linear layer Y = XW that:

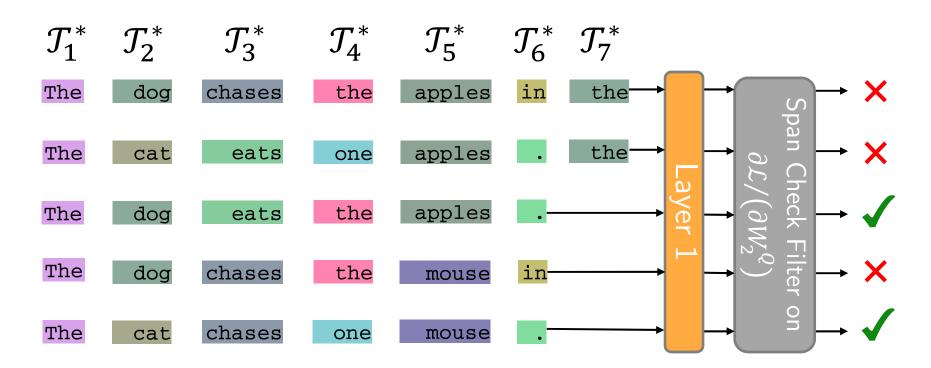
$$\frac{\partial \mathcal{L}}{\partial W} = X^T \frac{\partial \mathcal{L}}{\partial Y}$$



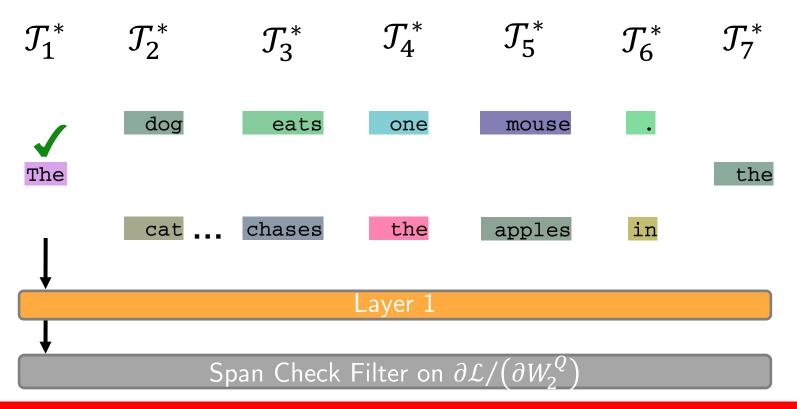
[1] Dimitrov, Dimitar I., et al. "Spear: Exact gradient inversion of batches in federated learning."


The DAGER Pipeline

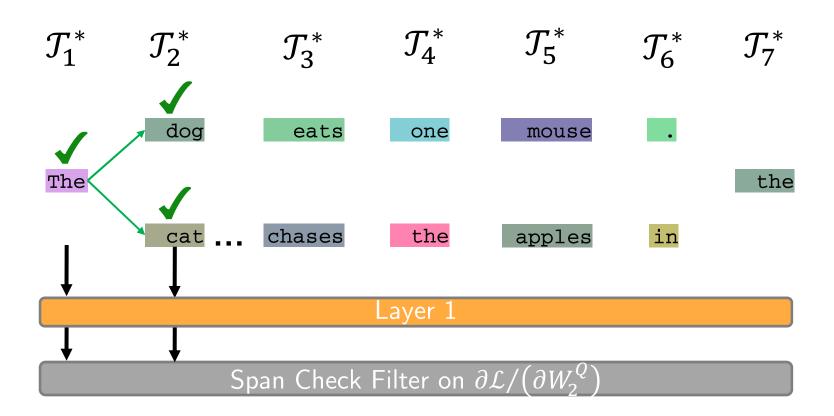

Token Recovery

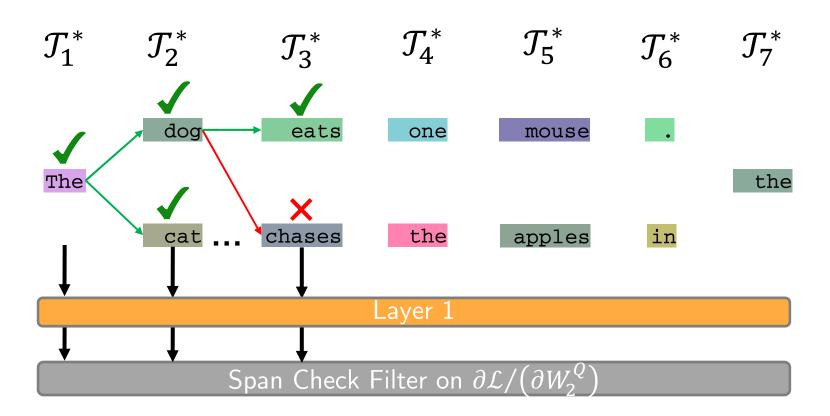


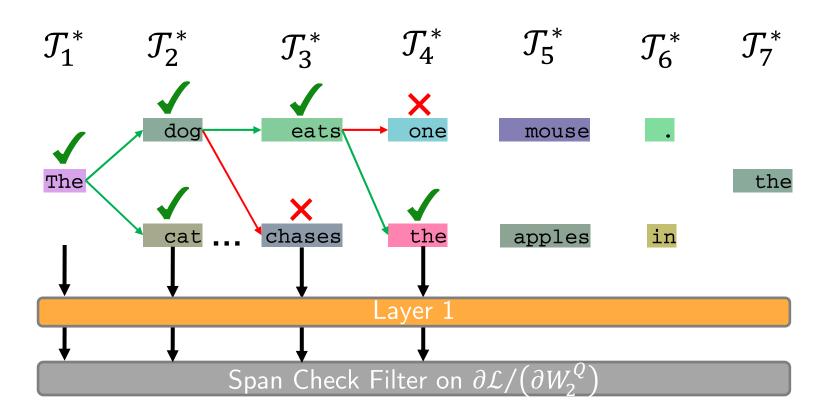
Token Recovery

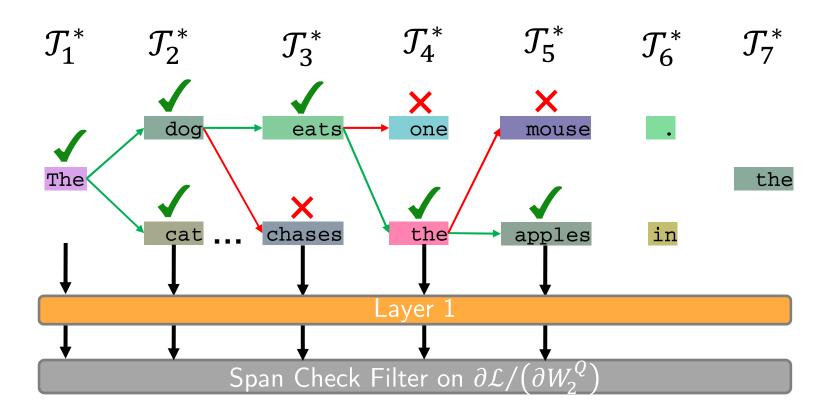


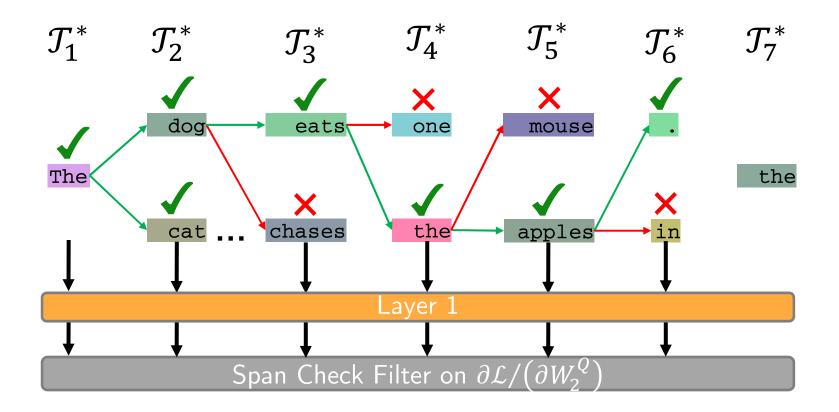
The DAGER Pipeline

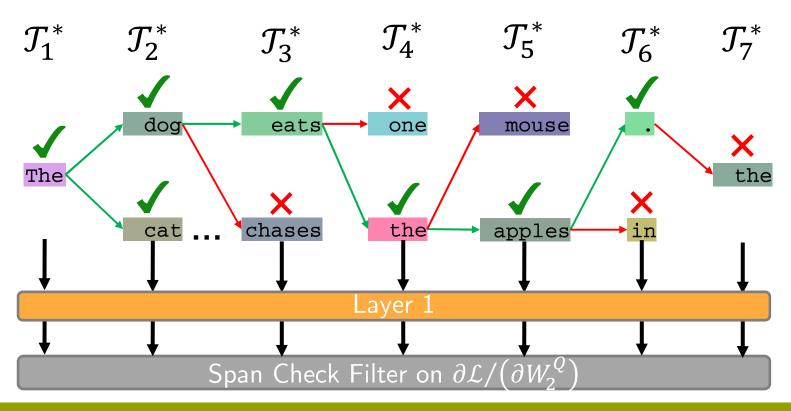


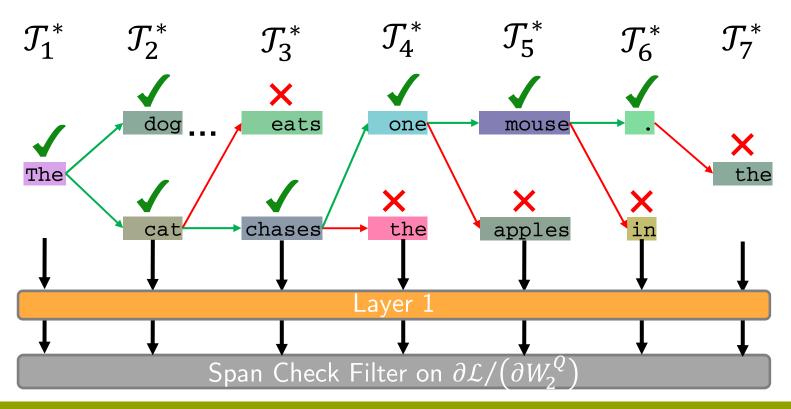



Exhausting all token combinations is possible for encoder-only models, but is computationally expensive.




Key Observation: The outputs at position t only depend on inputs of tokens up to t-1





We can iteratively reconstruct entire sentences exactly

We can recover entire batches of text by following different beams.

Evaluation

Baseline Comparison – Encoder-only Models

			B = 1		B=2		B=4		B=8	
			R-1	R-2	R-1	R-2	R-1	R-2	R-1	R-2
BERT	CoLA	TAG	78.9 ± 4.4	10.3 ± 3.0	68.9 ± 4.2	7.7 ± 1.7	56.3 ± 3.4	6.8 ± 1.4	45.9 ± 1.9	3.9 ± 0.6
		LAMP	89.6 ± 2.5	51.9 ± 6.7	77.8 ± 3.6	31.5 ± 4.6	66.2 ± 3.4	21.8 ± 1.7	52.9 ± 2.2	13.1 ± 1.9
		DAGER	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	94.0 ± 2.0	89.9 ± 3.1	67.8 ± 2.3	48.8 ± 4.5
	SST-2	TAG	75.4 ± 4.3	19.0 ± 6.9	71.8 ± 3.6	16.0 ± 3.9	61.0 ± 3.4	12.3 ± 2.8	50.4 ± 2.4	9.2 ± 1.6
		LAMP	88.8 ± 3.0	56.8 ± 7.9	82.4 ± 3.6	45.7 ± 6.0	69.5 ± 3.6	32.5 ± 4.4	56.9 ± 2.6	19.1 ± 2.8
		DAGER	100.0 ± 0.0	100.0 ± 0.0	$99.3_{-2.0}^{+0.7}$	$99.0^{+0.8}_{-2.1}$	95.6 ± 2.2	93.0 ± 3.3	74.1 ± 3.3	59.8 ± 2.9
	Rotten Tomatoes	TAG	60.1 ± 4.4	3.3 ± 1.2	49.2 ± 3.5	3.0 ± 0.9	33.7 ± 2.5	1.6 ± 0.7	25.4 ± 1.2	0.9 ± 0.4
		LAMP	64.7 ± 4.4	16.5 ± 3.9	46.4 ± 3.7	7.6 ± 2.0	35.1 ± 2.7	4.2 ± 1.3	27.3 ± 1.4	2.0 ± 0.6
		DAGER	100.0 ± 0.0	100.0 ± 0.0	98.1 ± 1.2	96.5 ± 1.8	66.8 ± 3.2	50.1 ± 4.4	37.1 ± 1.2	11.4 ± 1.3

^{*}we observe non-perfect R-2 scores on the SST-2 dataset due to an artifact of our metric library that assigns a R-2 score of 0 to single-word sequences.

Baseline Comparison – Decoder-only Models

			B =	= 1	B=2		B =	B=4		B = 8	
			R-1	R-2	R-1	R-2	R-1	R-2	R-1	R-2	
	CoLA	TAG	7.0 ± 2.5	0.54 ± 0.54	8.0 ± 2.0	1.4 ± 1.3	7.8 ± 1.2	0.8 ± 0.5	5.3 ± 0.7	0.4 ± 0.2	
GPT-2		LAMP	73.3 ± 4.5	43.3 ± 7.0	26.8 ± 2.8	11.0 ± 3.0	13.4 ± 1.4	3.9 ± 1.2	8.9 ± 1.2	1.9 ± 0.6	
		DAGER	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	
		TAG	5.3 ± 0.5	0.0 ± 0.0	6.0 ± 1.7	0.5 ± 0.4	6.1 ± 1.2	0.6 ± 0.6	4.4 ± 0.6	$0.2^{+0.6}_{-0.1}$	
	SST-2	LAMP	62.2 ± 6.9	31.8 ± 8.4	21.4 ± 3.1	9.2 ± 3.1	9.8 ± 2.0	2.7 ± 1.3	8.1 ± 1.1	0.7 ± 0.4	
		DAGER	100.0 ± 0.0	$86.0 \pm 7.0^{\color{red} \bigstar}$	100.0 ± 0.0	$89.5 \pm 4.1 \textcolor{red}{^{*}}$	100.0 ± 0.0	$92.8 \pm 2.4\mathbf{^{*}}$	100.0 ± 0.0	$92.9 \pm 1.6^{\prime\prime}$	
	Rotten Tomatoes	TAG	7.1 ± 1.8	$0.1^{+0.4}_{-0.1}$	7.0 ± 1.2	$0.1^{+0.2}_{-0.1}$	6.2 ± 0.8	$0.1^{+0.2}_{-0.1}$	6.1 ± 0.5	0.1 ± 0.1	
		LAMP	31.4 ± 4.4	9.3 ± 3.6	11.2 ± 1.2	0.9 ± 0.42	6.3 ± 1.1	0.9 ± 0.6	6.8 ± 0.7	$0.3^{+0.2}_{-0.1}$	
	Tomatoes	DAGER	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	$99.3_{-1.7}^{+0.7}$	$99.3_{-1.8}^{+0.7}$	$100.0^{+0.0}_{-0.1}$	$99.9_{-0.6}^{+0.1}$	
									-		
			B	= 16	B = 32		B = 64		B = 128		
			R-1	R-2	R-1	R-2	R-1	R-2	R-1	R-2	
	DLA C	PT-2	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	30.3 ± 1.0	14.6 ± 0.9	
C	LA L	LaMa-2 (7B)	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	$\textbf{100.0} \pm \textbf{0.0}$	$99.9^{+0.0}_{-0.1}$	$99.9^{+0.0}_{-0.1}$	99.5 ± 0.2	99.3 ± 0.3	
	T-2	PT-2	$\textbf{100.0} \pm \textbf{0.0}$	94.6 ± 1.1	$100.0^{+0.0}_{-0.1}$	93.4 ± 1.0	92.9 ± 3.0	85.0 ± 3.5	13.7 ± 1.4	4.3 ± 0.5	
33	L	LaMa-2 (7B)	100.0 ± 0.0	100.0 ± 0.0	$99.9^{+0.0}_{-0.1}$		99.9 ± 0.1	99.9 ± 0.1	98.2 ± 0.4	97.8 ± 0.4	
Ro	tten C	PT-2	100.0 ± 0.0	$99.9^{+0.1}_{-0.3}$	98.0 ± 1.7	97.8 ± 1.8	2.8 ± 1.1	1.1 ± 0.4	0.0 ± 0.0	0.0 ± 0.0	
Ton	atoes L	LaMa-2 (7B)	$100.0^{+0.0}_{-0.1}$		100.0 ± 0.0	100.0 ± 0.0	97.9 ± 0.5	97.8 ± 0.5	$99.7^{+0.1}_{-0.2}$	$99.7^{+0.2}_{-0.3}$	

^{*}we observe non-perfect R-2 scores on the SST-2 dataset due to an artifact of our metric library that assigns a R-2 score of 0 to single-word sequences.

DAGER under different settings

	B =	16	B = 32		
	R-1	R-2	R-1	R-2	
GPT-2 _{BASE}	100.0 ± 0.0	$99.9_{-0.3}^{+0.1}$	98.0 ± 1.7	97.8 ± 1.8	
GPT-2 _{FineTuned} GPT-2 _{NextToken} GPT-2 _{LARGE}	$egin{array}{c} {f 100.0 \pm 0.0} \\ {f 99.9 \pm 0.0} \\ {f 100.0 \pm 0.0} \end{array}$	$99.8_{-0.3}^{+0.1} \\ 99.7_{-0.3}^{+0.2} \\ 99.8_{-0.3}^{+0.1}$	96.4 ± 2.3 $99.6^{+0.3}_{-0.9}$ $\mathbf{100.0 \pm 0.0}$	96.0 ± 2.5 $99.4^{+0.3}_{-0.9}$ $99.9^{+0.1}_{-0.2}$	

	LLaMa-3 70B ($B = 1$)	LoRA $(r = 256)$
R-1	$99.9^{+0.1}_{-0.2}$	94.8
R-2	$99.9^{+0.1}_{-0.2}$ s	94.2 ± 0.7

DAGER under different settings

E	R-1	R-2	η	R-1	R-2	B_{mini}	R-1	R-2
2	98.4 ± 0.9	98.0 ± 1.0	10^{-5}	$100.0^{+0.0}_{-0.2}$	$99.8^{+0.2}_{-0.4}$ $99.6^{+0.3}_{-0.7}$	2	93.2 ± 1.7	92.3 ± 1.9
5	97.3 ± 1.2	96.8 ± 1.3	5×10^{-5}	$99.8^{+0.2}_{-0.5}$	$99.6_{-0.7}^{+0.3}$	4	95.4 ± 1.6	94.7 ± 1.7
10	95.4 ± 1.6	94.7 ± 1.7	10^{-4}	95.4 ± 1.6	94.7 ± 1.7	8	$98.6^{+0.5}_{-0.9}$	$98.2^{+0.7}_{-1.0}$
20	96.0 ± 1.4	95.3 ± 1.6	5×10^{-4}	84.2 ± 1.8	82.2 ± 1.9	16	100.0 ± 0.0	$99.8^{+0.2}_{-0.3}$

Further details can be found in the paper.

NeurIPS 2024 page:

OpenReview:

