

Fourier-enhanced Implicit Neural Fusion Network

for Multispectral and Hyperspectral Image Fusion

Yu-Jie Liang*†*¹ yujieliang0219@gmail.com

Zihan Cao †¹ iamzihan666@gmail.com

Shangqi Deng 2Hong-Xia Dou 3Liang-Jian Deng * 1shangqideng0124@gmail.comhongxiadou1991@126.comliangjian.deng@uestc.edu.cn

Multispectral and Hyperspectral Image Fusion

Preliminary and Motivation

FeINFN Framework

Spatial-Frequency Implicit Fusion Function

• INR Encoder Networks

The INR encoders try to extract spatial and spectral latent codes:

$$\mathbf{Z}_{spe} = E_{\chi}(\mathbf{I}^{LR}), \quad \mathbf{Z}_{spa} = E_{\psi}\left(\operatorname{Cat}(\mathbf{I}_{up}^{LR}, \mathbf{I}^{HR})\right)$$

• Spatial-Frequency Implicit Fusion Function Spatical Domain: $\mathbf{w}_{q,i}, \mathbf{v}_{q,i} = \phi_{\theta}(\mathbf{z}_{spe}, \mathbf{z}_{spa}, \mathbf{z}_{hp}, \gamma(\delta \mathbf{x}))$ $\boldsymbol{\varepsilon}_{s} = \sum_{i \in \mathcal{N}_{q}} \overline{\mathbf{w}}_{q,i} * \mathbf{v}_{q,i}.$ $\delta \mathbf{x} = \{\mathbf{x}_{q} - \mathbf{x}_{q,i}\}_{i \in \mathcal{N}_{q}}$ $\delta \mathbf{x} = \{\mathbf{x}_{q} - \mathbf{x}_{q,i}\}_{i \in \mathcal{N}_{q}}$ $\gamma(\delta \mathbf{x}) = [\sin(2^{0}\delta \mathbf{x}), \cos(2^{0}\delta \mathbf{x}), \cdots, \sin(2^{L-1}\delta \mathbf{x}), \cos(2^{L-1}\delta \mathbf{x})]$

Frequency Domain: We employ FFT to transform latent codes from the spatial domain to the frequency domain, handling amplitude and phase separately:

$$\begin{split} \mathbf{w}_{q,i}^{\mathcal{A}}, \mathbf{v}_{q,i}^{\mathcal{A}} &= \phi_{\alpha}^{\mathcal{A}}(\mathcal{A}(\mathbf{f}_{spe}), \mathcal{A}(\mathbf{f}_{spa}), \delta \mathbf{x}) \qquad \mathcal{A}_{f}' = \sum_{i \in \mathcal{N}_{q}} \overline{\mathbf{w}}_{q,i}^{\mathcal{A}} * \mathbf{v}_{q,i}^{\mathcal{A}} \\ \mathbf{w}_{q,i}^{\mathcal{P}}, \mathbf{v}_{q,i}^{\mathcal{P}} &= \phi_{\beta}^{\mathcal{P}}(\mathcal{P}(\mathbf{f}_{spe}), \mathcal{P}(\mathbf{f}_{spa}), \delta \mathbf{x}) \quad \mathcal{P}_{f}' = \sum_{i \in \mathcal{N}_{q}} \overline{\mathbf{w}}_{q,i}^{\mathcal{P}} * \mathbf{v}_{q,i}^{\mathcal{P}} \\ \overset{\text{Add}}{=} \sum_{i \in \mathcal{N}_{q}} \overline{\mathbf{w}}_{q,i}^{\mathcal{P}} * \mathbf{v}_{q,i}^{\mathcal{P}} \end{split}$$

conv 🙂

conv 🔅

Spatial-Frequency Interactive Decoder

Theorem 1. The complex Gabor wavelet activation $\mathcal{G}(\mathbf{x}) = e^{j\omega_0 \mathbf{x}} e^{-|\upsilon_0 \mathbf{x}|^2}$ has the time-frequency tightness property. Moreover, from the perspective of signal spectrum analysis, this activation helps the decoder learn the optimal bandwidths.

Time domain Tightness:

 $|\mathcal{G}(\mathbf{x})|$ is primarily concentrated around **x**=0 due to the exponential decay term. Frequency domain Tightness:

 $\mathcal{F}[\mathcal{G}(\mathbf{x})] = \int e^{j\omega_0 \mathbf{x}} e^{-|\upsilon_0 \mathbf{x}|^2} e^{-j\omega \mathbf{x}} d\mathbf{x}.$ Uncertainty principle: $|\omega_0| \cdot \upsilon_0 \ge \frac{1}{4\pi}$

Experiments

Experiments

Methods	$CAVE \times 4$				Harvard ×4					
	PSNR(↑)	SAM(↓)	ERGAS(↓)	SSIM(†)	#params	PSNR(↑)	SAM(↓)	$ERGAS(\downarrow)$	SSIM(↑)	#params
Bicubic	34.33±3.88	4.45±1.62	7.21±4.90	0.944±0.029		38.71±4.33	2.53 ± 0.67	4.45±1.81	0.948 ± 0.027	81 <u>- e</u> r
CSTF-FUS 22	34.46 ± 4.28	14.37 ± 5.30	8.29±5.29	$0.866 {\pm} 0.075$		39.15±3.45	6.93 ± 2.69	4.66±1.81	0.914 ± 0.049	
LTTR 9	35.85 ± 3.49	6.99 ± 2.55	5.99 ± 2.92	0.956 ± 0.029	<u> </u>	40.88 ± 3.94	4.01 ± 1.27	4.03±2.18	0.957 ± 0.035	<u> </u>
LTMR 8	36.54 ± 3.30	6.71±2.19	5.39 ± 2.53	0.963 ± 0.021		42.06 ± 3.56	3.51 ± 0.99	3.59±2.03	0.970 ± 0.020	_
IR-TenSR 45	35.61 ± 3.45	12.30 ± 4.68	5.90 ± 3.05	$0.945 {\pm} 0.027$	-	40.47±3.04	4.36 ± 1.52	5.57±1.57	0.963 ± 0.014	—
ResTFNet 24	45.58 ± 5.47	2.82 ± 0.70	2.36 ± 2.59	0.993 ± 0.006	2.387M	45.94 ± 4.35	2.61 ± 0.69	2.56±1.32	0.985 ± 0.008	2.387M
SSRNet 52	48.62 ± 3.92	$2.54{\pm}0.84$	1.63 ± 1.21	$0.995 {\pm} 0.002$	0.027M	48.00 ± 3.36	2.31 ± 0.60	2.30±1.42	0.987 ± 0.007	0.027M
HSRNet 16	50.38 ± 3.38	2.23 ± 0.66	1.20 ± 0.75	$0.996 {\pm} 0.001$	0.633M	48.29 ± 3.03	2.26 ± 0.56	1.87 ± 0.81	0.988 ± 0.006	0.633M
MogDCN [10]	51.63 ± 4.10	$2.03{\pm}0.62$	1.11 ± 0.82	$0.997 {\pm} 0.002$	6.840M	47.89±4.09	2.11 ± 0.52	1.89 ± 0.82	0.988 ± 0.007	6.840M
Fusformer [15]	$49.98{\pm}8.10$	2.20 ± 0.85	2.50 ± 5.21	$0.994 {\pm} 0.011$	0.504M	47.87±5.13	2.84 ± 2.07	2.04±0.99	0.986 ± 0.010	0.467M
DHIF 17	51.07 ± 4.17	2.01 ± 0.63	1.22 ± 0.97	$0.997 {\pm} 0.002$	22.462M	47.68±3.85	2.32 ± 0.53	1.95 ± 0.92	0.988 ± 0.007	22.462M
PSRT 7	$50.47{\pm}6.19$	2.19 ± 0.64	2.06 ± 3.71	0.996 ± 0.003	<u>0.247M</u>	47.96±3.21	2.18 ± 0.55	1.89 ± 0.86	0.988 ± 0.006	0.247M
3DT-Net [25]	$51.38 {\pm} 4.18$	2.16 ± 0.70	1.14 ± 1.00	$0.996 {\pm} 0.003$	3.464M	47.78±4.42	2.04 ± 0.51	1.98 ± 0.86	0.989 ± 0.006	3.464M
DSPNet 35	51.18 ± 3.92	2.15 ± 0.64	1.13 ± 0.82	$0.997 {\pm} 0.002$	6.064M	48.29 ± 3.16	2.30 ± 0.55	1.93±0.93	0.988 ± 0.006	6.064M
MIMO-SST [11]	$50.98{\pm}3.39$	$2.23{\pm}0.70$	1.18 ± 0.73	$0.997 {\pm} 0.002$	4.983M	47.08 ± 5.56	2.09 ± 0.53	2.07±0.82	0.988 ± 0.007	4.983M
FeINFN(Ours)	$\textbf{52.47}{\pm}\textbf{4.10}$	$1.91{\pm}0.59$	0.98±0.74	$0.998{\pm}0.002$	3.165M	49.06±3.15	2.10 ± 0.53	1.78±0.75	0.989 ± 0.007	3.165M

Experiments

Table 2: Quantitative comparisons with other upsampling methods on the CAVE (\times 4) dataset.

Methods	PSNR(†)	SAM(↓)	$ERGAS(\downarrow)$	SSIM(↑)	#params
Bilinear	52.23 ± 4.40	1.92 ± 0.60	1.03 ± 0.86	0.997 ± 0.0021	3.119M
Bicubic	52.22 ± 4.31	1.95 ± 0.61	1.02 ± 0.82	0.997 ± 0.0021	3.119M
Pixel Shuffle	52.26 ± 4.37	1.90±0.59	1.02 ± 0.85	0.997 ± 0.0022	3.057M
Our	52.47±4.10	1.91±0.59	0.98±0.74	0.998±0.0015	3.165M

Table 3: Quantitative comparisons with reduced models on the CAVE (\times 4) dataset. *S* & *F* mean the domain difference.

S	\mathcal{F}	PSNR(↑)	$SAM(\downarrow)$	ERGAS(↓)	SSIM(†)	#params
1	X	52.11±4.22	1.95±0.59	1.04 ± 0.82	0.998±0.0017	2.869M
X	1	47.86±3.42	3.49 ± 1.30	1.67 ± 1.13	0.995 ± 0.0020	2.940M
1	1	52.47±4.10	1.91 ± 0.59	$0.98 {\pm} 0.74$	0.998±0.0015	3.165M

Table 4: Quantitative comparisons with different activation functions in SFID on the CAVE $(\times 4)$ dataset.

Nonlinear	PSNR(†)	SAM(↓)	ERGAS(↓)	SSIM(↑)
ReLU	52.03±3.84	2.00 ± 0.59	1.02 ± 0.74	0.998±0.0013
GELU	51.96±3.88	2.01 ± 0.60	1.03 ± 0.75	0.998 ± 0.0014
Leaky ReLU	51.98±3.92	2.01 ± 0.60	1.03 ± 0.76	0.998 ± 0.0014
Our	52.47±4.10	1.91±0.59	0.98±0.74	0.998 ± 0.0015

Figure 7: Changes in PSNR on the CAVE dataset of our FeINFN over iterations with and without the "Fourier Domain". The Frequency IFF can help the network learn the high-frequency details and converge faster.

Thanks for your attention !

Paper

Code

Datasets

