Van Minh Nguyen, **Cristian Ocampo**, **Aymen Askri**, **Louis Leconte**, **Ba-Hien Tran**

Objective and Contributions

- **I A novel notion of Boolean variation** and new mathematical framework of its calculus providing the chain rule similar to continuous gradient.
- **I A novel Boolean logic backpropagation and optimization** method allowing for deep neural networks to **operate solely with Boolean logic** and to be **trained directly in Boolean domain.**
- **In State-of-the-art results** compared to binarized neural networks, evaluated on challenging tasks with ConvNets, Transformers, ...
- **In Significantly energy-efficient**: both training & inference.

Boolean Neuron. Let L be a logic gate such as AND, OR, XOR, XNOR. The neuron's pre-activation output is given as follows:

Mixed Boolean-Real Neuron. For flexibility, we can extend to Boolean weights with real-valued inputs, and real-valued weights with Boolean inputs. **Forward Activation.** $y = T$ if $s \geq \tau$ and $y = F$ if $s < \tau$ where s is the

Boolean Neural Networks

following Eq. [2;](#page-0-0) ; /* **1. Forward pass** */ from downstream layer; ; /* **2. Backward pass** */ of Eq. [6;](#page-0-1) ; /* **2.1 Backpropagation** */ $\frac{1}{2}$ ate process */

 $/*$ invert $*/$

/* keep */

$$
s = w_0 + \sum_{i=1}^m L(w_i, x_i), \quad \text{where } w_i, x_i \in \mathbb{B} := \{\mathbf{T}\}
$$

Definition 1. Order relations in B are defined as: F *<* T, and T *>* F. **Definition 2.** For a, $b \in \mathbb{B}$, the variation from a to b, denoted $\delta(a \rightarrow b)$, is defined as: $\delta(a \rightarrow b)$ def $\stackrel{\text{def}}{=}$ T if $b > a$, def $\stackrel{\mathrm{def}}{=} 0$ if $b = a$, and def $\stackrel{\text{def}}{=}$ F if $b < a$. **Definition 3.** For $f \in \mathcal{F}(\mathbb{B}, \mathbb{D})$, $\forall x \in \mathbb{B}$, write $\delta f(x \rightarrow \neg x) :=$ $\delta(f(x) \to f(\neg x))$. The variation of f w.r.t. x, i.e., $f'(x)$, is defined as: $f'(x)$ $\stackrel{\text{def}}{=} {\sf xnor}(\delta(\textsf{x}\to \neg \textsf{x}),\delta f(\textsf{x}\to \neg \textsf{x})).$ Here, $\mathbb D$ is either a logic set $\mathbb B$ or a numeric set, e.g., $\mathbb R$ or $\mathbb Z$. Remark. The variation of f w.r.t. x is T if f varies in same direction with x. **Definition 4.** For $f \in \mathcal{F}(\mathbb{Z}, \mathbb{D})$, the variation of f w.r.t. $x \in \mathbb{Z}$ is defined as $f'(x)$ $\stackrel{\text{def}}{=} \delta f(x \to x+1)$, where δf is the variation defined in $\mathbb D.$ **Theorem 5.** The following properties hold: \mathbf{p} For $\mathbb{B} \stackrel{f}{\rightarrow} \mathbb{B} \stackrel{g}{\rightarrow} \mathbb{D}$: $(g \circ f)$ $f'(x) = xnor(g'(f(x)), f'(x)), \forall x \in \mathbb{B}.$ \mathbf{a} For $\mathbb{B} \stackrel{f}{\rightarrow} \mathbb{Z} \stackrel{g}{\rightarrow} \mathbb{D}, \ x \in \mathbb{B}, \ \text{if} \ |f|$ $|f'(x)| \leq 1$ and $g'(f(x)) = g'(f(x) - 1)$, then: $(g \circ f)'(x) = xnor(g'(f(x)), f'(x)).$

preactivation, *τ* is a fixed or learnable scalar threshold.

Boolean Training

B⊕LD: Boolean Logic Deep Learning

Boolean Variation

 $\{F\}$. (1)

 \blacksquare They learn binary weights, \mathbf{w}_{bin} , through *full-precision latent weights*, \mathbf{w}_{fb} using common gradient-descent methods, i.e.

- **X** No gains during the training!
-

Our method, B⊕LD, significantly outperforms the SOTA binarized neural | networks (BNNs) both in terms of predictive performance and energy efficiency. |

Boolean Backpropagation

$$
x_{k,i}^l \in \mathbb{B}
$$

\n
$$
\frac{\delta \text{Loss}}{\delta x_{k,i}^l} \in \mathbb{R} \text{ or } \mathbb{B}
$$

\n
$$
(w_{i,j}^l \in \mathbb{B})
$$

\n
$$
\frac{\delta \text{Loss}}{\delta x_{k,i}^{l+1}} \in \mathbb{B}
$$

Consider the Boolean l-th layer, which is assumed a fully-connected layer m

$$
x_{k,j}^{l+1} = w_{0,j}^l + \sum_{i=1}^{\infty} L(x_{k,i}^l, w_{i,j}^l), \quad 1 \leq j \leq n,
$$
 (2)

where k is sample index, m and n are input and output sizes. Remark. Layer *l* is connected to layer $l + 1$ that can be an activation layer, a batch normalization, an arithmetic layer, or any others. **Atomic Variation.** Consider L = xnor

$$
q'_{i,j,k} := \frac{\delta \text{Loss}}{\delta w'_{i,j}}|_{k} = \text{xnor}(\frac{\delta \text{Loss}}{\delta x'^{l+1}} \cdot \frac{\delta x'^{l+1}}{\delta w'_{i,j}}) \stackrel{\text{xnor}}{=} \text{xnor}(\frac{\delta \text{Loss}}{\delta x'^{l+1}} \cdot x'_{k,i}),
$$
(3)

$$
g'_{k,i,j} := \frac{\delta \text{Loss}}{\delta x'_{k,i}}|_{j} = \text{xnor}(\frac{\delta \text{Loss}}{\delta x'^{l+1}} \cdot \frac{\delta x'^{l+1}}{\delta x'_{k,j}}) \stackrel{\text{xnor}}{=} \text{xnor}(\frac{\delta \text{Loss}}{\delta x'^{l+1}} \cdot w'_{i,j}).
$$
(4)

Aggregation. Using the chain rules given by Theorem 5, we have

$$
q'_{i,j} := \frac{\delta \text{Loss}}{\delta w'_{i,j}} = \sum_{k} \mathbf{1}(q'_{i,j,k} = \text{T})|q'_{i,j,k}| - \sum_{k} \mathbf{1}(q'_{i,j,k} = \text{F})|q'_{i,j,k}|, \qquad (5)
$$

$$
g'_{k,i} := \frac{\delta \text{Loss}}{\delta x'_{k,i}} = \sum_{j} \mathbf{1}(g'_{k,i,j} = \text{T})|g'_{k,i,j}| - \sum_{j} \mathbf{1}(g'_{k,i,j} = \text{F})|g'_{k,i,j}|. \qquad (6)
$$

Boolean Optimizer. With q_i' $\mathcal{I}_{i,j}^{\prime}$ obtained in Eq. [5,](#page-0-2) the rule for optimizing W_i^{\prime} $\kappa_{i,j}'$ subjected to making the loss decreased is simply given according to its definition as:

$$
w'_{i,j} = \neg w'_{i,j} \text{ if } xnor(q'_{i,j}, w'_{i,j}) = \text{T}.
$$
 (7)

Binarized Neural Networks — An Approximated Binary

✗ Sub-optimal performance due the approximations of latent weight gradient!

Experimental Results

VGG-SMALL.

Table: Natural language understanding results with BERT models.

Acc. Cons. $(\%)$

 $(\%)$ Tesla V100

fig. 7 100.00

51.8 3.87

56.4 32.99

62.2 58.24

Table: Image classification results with RESNET18 on IMAGENET. 'Base' is the mapping dimension of 1st layer.

 $\textbf{w}_{\texttt{bin}} = \textsf{sign}(\textbf{w}_{\texttt{fp}} - \eta \cdot \textbf{g}_{\textbf{w}_{\texttt{fp}}})$

^B⊕LD (Base 256) **66.9** 24.45

Table: Super-resolution results measured in PSNR (dB) (↑), using the EDSR baseline.

Table: Image segmentation results.

Full-precision B⊕LD (Ours)

ure: An example of CITYSCAPES.

References

n and Boolean Logic BackPropagation". Arxiv 2023 [2] Hubara et al. "Binarized Neural Networks". NIPS 2016