

Objective and Contributions

- > A novel notion of **Boolean variation** and new mathematical framework of its calculus providing the chain rule similar to continuous gradient.
- A novel Boolean logic backpropagation and optimization method allowing for deep neural networks to operate solely with Boolean logic and to be trained directly in Boolean domain.
- **State-of-the-art results** compared to binarized neural networks, evaluated on challenging tasks with ConvNets, Transformers, ...
- **Significantly energy-efficient**: *both* training & inference.

Boolean Neural Networks

Boolean Neuron. Let L be a logic gate such as AND, OR, XOR, XNOR. The neuron's pre-activation output is given as follows:

$$s = w_0 + \sum_{i=1}^m L(w_i, x_i), \quad ext{where } w_i, x_i \in \mathbb{B} := \{ ext{T}\}$$

Mixed Boolean-Real Neuron. For flexibility, we can extend to Boolean weights with real-valued inputs, and real-valued weights with Boolean inputs. **Forward Activation.** y = T if $s \ge \tau$ and y = F if $s < \tau$ where s is the

preactivation, τ is a fixed or learnable scalar threshold.

Boolean Training

Α	Igorithm 1: Illustration with a FC layer.
In	put : Learning rate η , number of iterations T ;
In	itialize: $m_{i,j}^{\prime,0} = 0; \ \beta^0 = 1;$
1 fo	r t = 0,, T - 1 do
2	Compute $x^{l+1,t}$ following Eq. 2; ; /* 1. Fo
3	Receive $\frac{\delta \text{Loss}}{\delta x_{k,j}^{l+1,t}}$ from downstream layer; ; /* 2. Bac
4	Compute and backpropagate $g^{I,t}$ of Eq. 6; ; /* 2.1 Backg
5	$N_{ m tot}:=0,\;N_{ m unchanged}:=0;\;;$ /* 2.2 Weight upda
6	foreach $w'_{i,i}$ do
7	Compute $q_{i,i}^{l,t+1}$ following Eq. 5;
8	Update $m_{i,j}^{l,t+1} = \beta^t m_{i,j}^{l,t} + \eta^t q_{i,j}^{l,t+1}$;
9	$N_{\mathrm{tot}} \leftarrow N_{\mathrm{tot}} + 1;$
10	if $\operatorname{xnor}(m_{i,i}^{l,t+1}, w_{i,i}^{l,t}) = T$ then
11	$ w_{i,j}^{\prime,t+1} = \neg w_{i,j}^{\prime,t}, \ m_{i,j}^{\prime,t+1} = 0$;
12	else
13	$ w_{i,j}^{\prime,t+1} = w_{i,j}^{\prime,t}, N_{ ext{unchanged}} \leftarrow N_{ ext{unchanged}} + 1;$
14	end
15	end
16	Update η^{t+1} , $\beta^{t+1} = \textit{N}_{ ext{unchanged}} / \textit{N}_{ ext{tot}}$;
17 er	nd

B DLD: **Boolean Logic Deep Learning**

Van Minh Nguyen, Cristian Ocampo, Aymen Askri, Louis Leconte, Ba-Hien Tran

Boolean Variation

F} .

(1)

orward pass */ ckward pass */ propagation */ ate process */

/* invert */

/* keep */

Definition 1. Order relations in \mathbb{B} are defined as: F < T, and T > F. **Definition 2.** For $a, b \in \mathbb{B}$, the variation from a to b, denoted $\delta(a \rightarrow b)$, is defined as: $\delta(a \rightarrow b) \stackrel{\text{def}}{=} T$ if b > a, $\stackrel{\text{def}}{=} 0$ if b = a, and $\stackrel{\text{def}}{=} F$ if b < a. **Definition 3.** For $f \in \mathcal{F}(\mathbb{B}, \mathbb{D})$, $\forall x \in \mathbb{B}$, write $\delta f(x \rightarrow \neg x) :=$ $\delta(f(x) \rightarrow f(\neg x))$. The variation of f w.r.t. x, i.e., f'(x), is defined as: $f'(x) \stackrel{\text{def}}{=} \operatorname{\mathbf{xnor}}(\delta(x \to \neg x), \delta f(x \to \neg x))$. Here, \mathbb{D} is either a logic set \mathbb{B} or a numeric set, e.g., $\mathbb R$ or $\mathbb Z.$ *Remark.* The variation of f w.r.t. x is T if f varies in same direction with x. **Definition 4.** For $f \in \mathcal{F}(\mathbb{Z}, \mathbb{D})$, the variation of f w.r.t. $x \in \mathbb{Z}$ is defined as $f'(x) \stackrel{\text{\tiny Ger}}{=} \delta f(x \to x + 1)$, where δf is the variation defined in \mathbb{D} . **Theorem 5.** The following properties hold: • For $\mathbb{B} \xrightarrow{f} \mathbb{B} \xrightarrow{g} \mathbb{D}$: $(g \circ f)'(x) = \operatorname{xnor}(g'(f(x)), f'(x)), \forall x \in \mathbb{B}$. ② For $\mathbb{B} \xrightarrow{f} \mathbb{Z} \xrightarrow{g} \mathbb{D}$, x ∈ \mathbb{B} , if $|f'(x)| \leq 1$ and g'(f(x)) = g'(f(x) - 1), then: $(g \circ f)'(x) = xnor(g'(f(x)), f'(x)).$

Boolean Backpropagation

$$x_{k,i}^{l} \in \mathbb{B} \longrightarrow \begin{array}{c} \textbf{Boolean} \\ \textbf{Layer } l \\ \frac{\delta \text{Loss}}{\delta x_{k,i}^{l}} \in \mathbb{R} \text{ or } \mathbb{B} \end{array} \qquad (w_{i,j}^{l} \in \mathbb{B}) \qquad \frac{\delta \text{Loss}}{\delta x_{k,i}^{l+1}} \in \mathbb{B}$$

Consider the Boolean *I*-th layer, which is assumed a fully-connected layer

$$x_{k,j}^{\prime+1} = w_{0,j}^{\prime} + \sum_{i=1}^{m} L(x_{k,i}^{\prime}, w_{i,j}^{\prime}), \quad 1 \leq j \leq n,$$
 (2)

where k is sample index, m and n are input and output sizes. *Remark.* Layer *I* is connected to layer I + 1 that can be an activation layer, a batch normalization, an arithmetic layer, or any others. **Atomic Variation.** Consider L = xnor

$$q_{i,j,k}^{l} := \frac{\delta \text{Loss}}{\delta w_{i,j}^{l}}|_{k} = \operatorname{xnor}\left(\frac{\delta \text{Loss}}{\delta x_{k,j}^{l+1}}, \frac{\delta x_{k,j}^{l+1}}{\delta w_{i,j}^{l}}\right) \stackrel{\text{xnor}}{=} \operatorname{xnor}\left(\frac{\delta \text{Loss}}{\delta x_{k,j}^{l+1}}, x_{k,i}^{l}\right), \quad (3)$$
$$g_{k,i,j}^{l} := \frac{\delta \text{Loss}}{\delta x_{k,i}^{l}}|_{j} = \operatorname{xnor}\left(\frac{\delta \text{Loss}}{\delta x_{k,j}^{l+1}}, \frac{\delta x_{k,j}^{l+1}}{\delta x_{k,j}^{l}}\right) \stackrel{\text{xnor}}{=} \operatorname{xnor}\left(\frac{\delta \text{Loss}}{\delta x_{k,j}^{l+1}}, w_{i,j}^{l}\right). \quad (4)$$

Aggregation. Using the chain rules given by Theorem 5, we have

$$q_{i,j}^{l} := \frac{\delta \text{Loss}}{\delta w_{i,j}^{l}} = \sum_{k} \mathbf{1}(q_{i,j,k}^{l} = T) |q_{i,j,k}^{l}| - \sum_{k} \mathbf{1}(q_{i,j,k}^{l} = F) |q_{i,j,k}^{l}|, \quad (5)$$
$$g_{k,i}^{l} := \frac{\delta \text{Loss}}{\delta x_{k,i}^{l}} = \sum_{j} \mathbf{1}(g_{k,i,j}^{l} = T) |g_{k,i,j}^{l}| - \sum_{j} \mathbf{1}(g_{k,i,j}^{l} = F) |g_{k,i,j}^{l}|. \quad (6)$$

Boolean Optimizer. With $q'_{i,i}$ obtained in Eq. 5, the rule for optimizing $w'_{i,i}$ subjected to making the loss decreased is simply given according to its definition as:

$$w'_{i,j} = \neg w'_{i,j}$$
 if **xnor**(q'_i

$(_{i,i}, w'_{i,i}) = T.$ (7)

Binarized Neural Networks — An Approximated Binary

They learn binary weights, \mathbf{w}_{bin} , through *full-precision latent weights*, \mathbf{w}_{fp} using common gradient-descent methods, i.e.

- X No gains during the training!

Our method, $B \oplus LD$, significantly outperforms the SOTA binarized neural networks (BNNs) both in terms of predictive performance and energy efficiency.

VGG-SMALL.

Table: Image classification results with RESNET18 on IMAGENET. 'Base' is the mapping dimension of 1st layer.

Training Modality	Method				
FP BASELINE	RESNET18				
	BINARYNET				
	XNOR-NET				
	$B \oplus LD + BN$				
FP SHORTCUT	BI-REALNET:18				
	BI-REALNET:34				
LARGE MODELS	BI-REALNET:152				
	MELIUS-NET:29				
	$B \oplus LD$ (Base 256)				
	REAL2BINARY				
	REACTNET-RESNET1				
KD: RESNET34	BNEXT:18				
	$B \oplus LD + BN$ (Base 1				
	$B \oplus LD$ (Base 256)				
KD: RESNET50	POKEBNN-RESNET18				
Reference Im	nage Gr				
	Figu				
	Rodoon Variation				
[2] Hubara et al. Binarized Ne					

 $\mathbf{w}_{\texttt{bin}} = \texttt{sign}(\mathbf{w}_{\texttt{fp}} - \eta \cdot \mathbf{g}_{\mathbf{w}_{\texttt{fp}}})$

× Sub-optimal performance due the approximations of latent weight gradient!

Experimental Results

able: Natural	language	understanding
esults with BERT	⁻ models.	

		Method	GLUE Benchmark (Accuracy, ↑)								
			MNLI	QQP	QNLI	SST-2	COLA	SST-B	MRPC	RTE	Avg.
		FP BERT	84.9	91.4	92.1	93.2	59.7	90.1	86.3	72.2	83.9
C		BINARYBERT	35.6	66.2	51.5	53.2	0.0	6.1	68.3	52.7	41.0
_)		BIBERT	66.1	84.8	72.6	88.7	25.4	33.6	72.5	57.4	63.2
)		BIT	77.1	82.9	85.7	87.7	25.1	71.1	79.7	58.8	71.0
		B⊕LD	75.6	85.9	84.1	88.7	27.1	68.7	78.4	58.8	70.9

Acc. Cons. (%)

(%) Tesla V100

3.87

24.45

69.7 100.00

56.4 32.99

62.2 58.24

42.2

51.8

64.5

66.9

Table: Super-resolution results measured in PSNR (dB) (\uparrow), using the EDSR baseline.

-						
Task	Method	SET5	SET14	BSD100	URBAN100	DIV2K
×2	FULL EDSR (FP)	38.11	33.92	32.32	32.93	35.03
	SMALL EDSR (FP)	38.01	33.63	32.19	31.60	34.67
	B⊕LD	37.42	33.00	31.75	30.26	33.82
×3	FULL EDSR (FP)	34.65	30.52	29.25		31.26
	SMALL EDSR (FP)	34.37	30.24	29.10		30.93
	B⊕LD	33.56	29.70	28.72		30.22
×4	FULL EDSR (FP)	32.46	28.80	27.71	26.64	29.25
	SMALL EDSR (FP)	32.17	28.53	27.62	26.14	29.04
	B⊕LD	31.23	27.97	27.24	25.12	28.36

Table: Image segmentation results.

	65.4		Dataset	Model	mloU (%) (↑)
1	65.5	77.89		FP BASELINE	70.7
	68.4	37.51	CITYSCAPES	BINARY DAD-NET	58.1
2))	65.9	16.91		B⊕LD	67.4
	70.0	24.45		FP BASELINE	72 1
	65.2		PASCAL VOC 2012	B⊕LD	67.3

round Truth **Full-precision** B⊕LD (**Ours**)

ure: An example of CITYSCAPES.

References

and Boolean Logic BackPropagation". Arxiv 2023 eural Networks". NIPS 2016