

Language Grounded Multi-agent Reinforcement Learning with Human-interpretable Communication

Huao Li, Hossein Nourkhiz Mahjoub, Behdad Chalaki, Vaishnav Tadiparthi, Kwonjoon Lee, Ehsan Moradi Pari, Michael Lewis, Katia Sycara

Background

Ad-hoc human-agent Teamwork

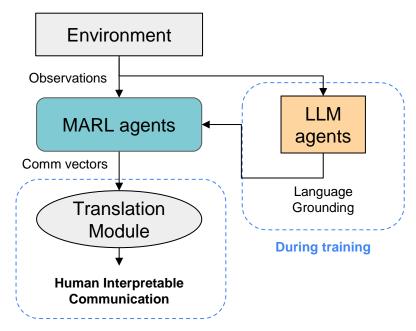
- Collaborate with **unseen** humans without pre-coordination
- Communicate in human-interpretable language

Multi-agent Reinforcement Learning with Communication (MARL-comm)

- Optimal task performance
- Not human interpretable

Embodied agents based on Large Language Models (LLMs)

- Common sense reasoning and human-like communication
- Suboptimal performance due to hallucinations



During ad-hoc teamwork

Reinforcement Learning objective

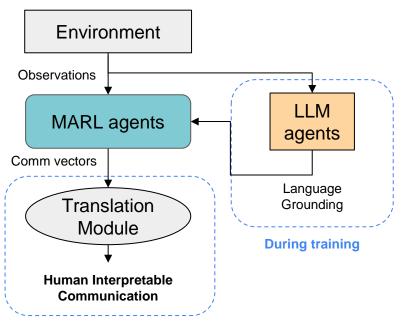
 $\max_{\pi^i: \mathcal{S} \rightarrow \mathcal{A} \times \mathcal{C}} \mathbb{E}[\sum_{t \in T} \sum_{i \in \mathcal{I}} \gamma^t \mathcal{R}(o_t^i, a_t^i) | a_t^i \sim \pi^i, o_t^i \sim \mathcal{O}]$

Language Learning objective

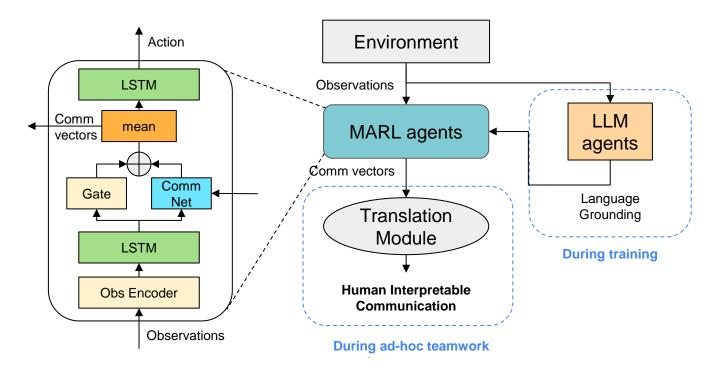
- L: O \rightarrow C
- Mimic target language $L^* \in L$

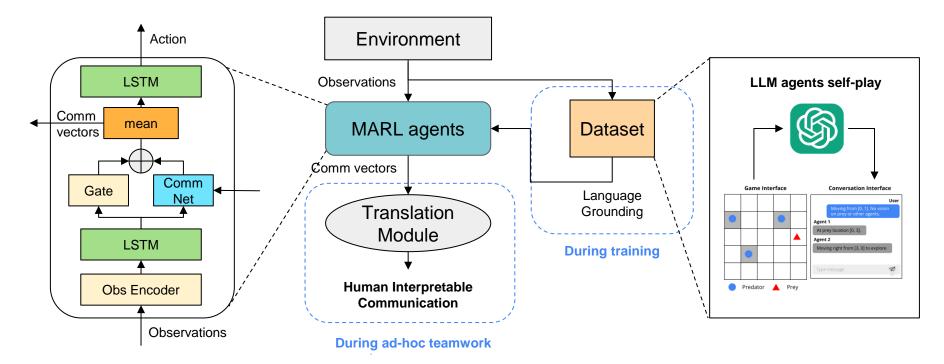
Jointly optimize RL and SL loss

 $L = L_{RL} + \lambda L_{sup}$



During ad-hoc teamwork

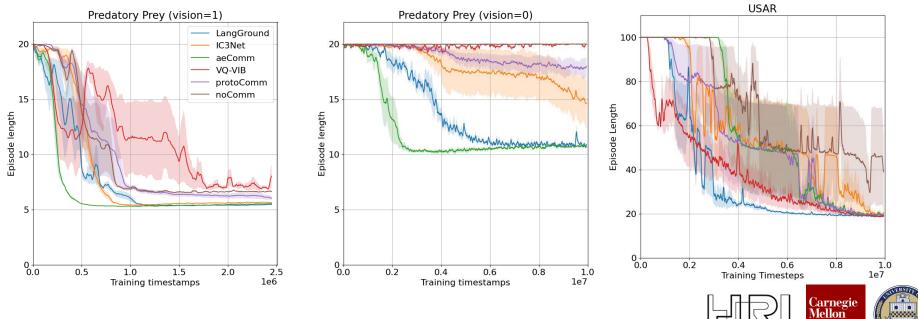




Task Performance

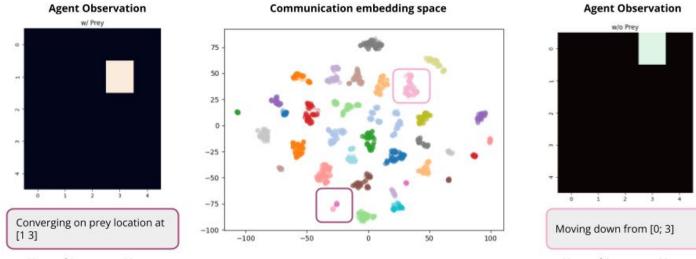
Takeaways

- On par final task performance with SOTA methods
- Converge faster in complicated task environments



University

Alignment



Natural Language Message

Natural Language Message

Zero-shot generalization

Methods

- Remove certain prey locations during training
- Compre LangGround agent's comm vector in novel states with LLM agent's communication

Takeaways

• LangGround is not memorizing, but aligning agent's comm space with embedding space of human language

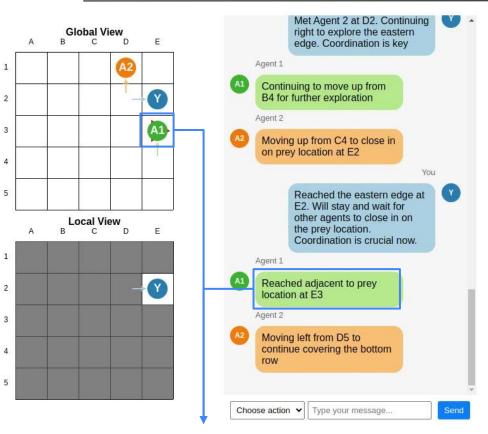
Prey Loc	Cos sim	Bleu score	Example message	
(1,1)	0.81	0.41	Moving up to converge on prey location at (1,0) for capture	
(1,3)	0.81	0.27	Converging on prey location at (1,3)	
(3,1)	0.82	0.51	Moving up towards prey location at (3,1)	
(3,3)	0.78	0.72	Converging on prey location at (3,3)	

Table 2: Zero-shot communication in pp_{v0}

Ad-hoc Teamwork

Demo: LLM agents + LangGround

• LangGround agents can accurately share task-related information with LLMs in natural language

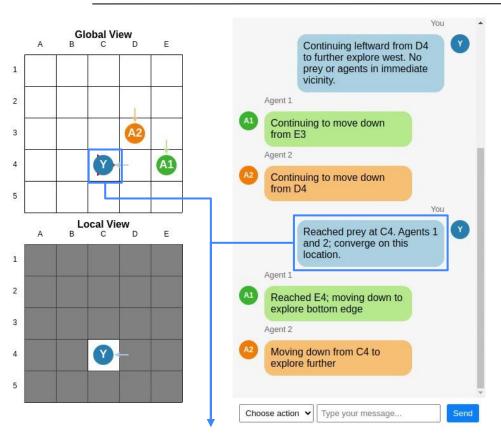


Agent 1 finds the prey, and accurately reports its location

Ad-hoc Teamwork

Demo: LLM agents + LangGround

- LangGround agents can accurately share task-related information with humans in natural language
- LangGround agents are able to understand novel messages generated by LLMs and behave accordingly



LLM finds the prey first and communicates this information

Ad-hoc Teamwork

Demo: LLM agents + LangGround

- LangGround agents can accurately share task-related information with humans in natural language
- LangGround agents are able to understand novel messages generated by humans and behave accordingly
- LangGround agents perform better than other methods in ad-hoc teamwork with unseen agents

Team composition	Predator Prey (vision = 1)	Predator Prey (vision = 0)
LangGround + LLMs	8.5 steps	15.5 steps
Autoencoder + LLMs	10.3 steps	17.5 steps
RL w/o Comm + LLMs	10.6 steps	20.0 steps

LangGround agents take less steps in completing the task

Summary

- We propose **LangGround**, a MARL pipeline to train agents with human-interpretable communication
- Align multi-agent communication space with human language by combining SL and RL
- Collect synthetic human data of team behaviors and communication from embodied LLM agents

Contributions

- Enhance the robustness of emergent communication learning via groundings provided by LLM agents
- Learn human interpretable communication protocols across diverse tasks
- Enable ad-hoc teamwork between MARL, LLM, and humans without pre-coordination