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Background

Ad-hoc human-agent Teamwork

● Collaborate with unseen humans without pre-coordination

● Communicate in human-interpretable language

Multi-agent Reinforcement Learning with Communication (MARL-comm)

● Optimal task performance

● Not human interpretable

Embodied agents based on Large Language Models (LLMs)

● Common sense reasoning and human-like communication

● Suboptimal performance due to hallucinations
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Reinforcement Learning objective

Language Learning objective

● L: O ➜ C

● Mimic target language L* ∈ L

Jointly optimize RL and SL loss
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Task Performance

Takeaways

● On par final task performance with SOTA methods

● Converge faster in complicated task environments



Alignment



Zero-shot generalization

Methods

● Remove certain prey locations during training

● Compre LangGround agent’s comm vector in novel states with LLM agent’s communication

Takeaways

● LangGround is not memorizing, but aligning agent’s comm space with embedding space of human language 
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Agent 1 finds the prey, and accurately reports its location

Ad-hoc Teamwork



Demo: LLM agents + LangGround

● LangGround agents can accurately 

share task-related information with 

humans in natural language

● LangGround agents are able to 

understand novel messages 

generated by LLMs and behave 

accordingly

LLM finds the prey first and communicates this information

Ad-hoc Teamwork



Demo: LLM agents + LangGround

● LangGround agents can accurately 

share task-related information with 

humans in natural language

● LangGround agents are able to 

understand novel messages 

generated by humans and behave 

accordingly

● LangGround agents perform better 

than other methods in ad-hoc 

teamwork with unseen agents LangGround agents take less steps in completing the task

Team composition
Predator Prey 

(vision = 1)

Predator Prey 

(vision = 0)

LangGround + 

LLMs
8.5 steps 15.5 steps

Autoencoder + 

LLMs
10.3 steps 17.5 steps

RL w/o Comm + 

LLMs
10.6 steps 20.0 steps

Ad-hoc Teamwork



Takeaways

Summary

● We propose LangGround, a MARL pipeline to train agents with human-interpretable communication

● Align multi-agent communication space with human language by combining SL and RL

● Collect synthetic human data of team behaviors and communication from embodied LLM agents

Contributions

● Enhance the robustness of emergent communication learning via groundings provided by LLM agents

● Learn human interpretable communication protocols across diverse tasks

● Enable ad-hoc teamwork between MARL, LLM, and humans without pre-coordination
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