Gautham Vasan, Mohamed Elsayed, Alireza Azimi*, Jiamin He*, Fahim Shahriar, Colin Bellinger, Martha White & A. Rupam Mahmood

Deep Policy Gradient Methods Without Batch Updates, Target Networks, or Replay Buffers

Real-Time Learning

Mars Perseverance Rover and Industrial Inspection With apple Watch iRobot Roomba

• Learning *online*, in real-time, can enable such systems to adapt to unforeseen changes in dynamic environments

Apple Watch

Tesla Autopilot **Loona Pet Robot**

In current AI systems, training and deployment are distinct phases, with the system frozen during deployment

Boston Dynamics Spot

Application of an AR Headset Nest Thermostat

-
-

Real-Time Learning Constraints

Deep reinforcement learning (RL) methods have steep resource requirements due to their use of large replay buffers, target networks and computationally intensive batch updates

- - They necessitate the use of large compute clusters for effective learning
- Current deep RL methods are ill-suited for on-device, real-time learning

Compute Cluster

Available during training Available after deployment

Edge Device

What Happens When we use Deep RL Methods Under Real-Time Learning Constraints?

- when the replay buffer size is reduced from their large default values
- PPO, TD3 and SAC fail catastrophically when buffer size is reduced to 1

• The learning performance of batch policy gradient methods degrades substantially

Incremental Learning

- In general, it is computationally infeasible to store all robot experience throughout its life and iteratively learn over the entire replay buffer
- We need methods that learn on the fly, *incrementally,* where updates only use the most recent sample without batch updates or a replay buffer
- Incremental RL methods are more resource-friendly and amenable to real-time updates
- They support on-device learning, which is critical to preserving the privacy and security of the user
- However, incremental policy gradient methods are rarely used in deep RL applications because they struggle to learn effectively with deep neural networks.

We propose a novel incremental deep policy gradient method — Action Value Gradient (AVG) which does not require batch updates, target networks or a replay buffer

Action Value Gradient (AVG)

• Notably, AVG is the only existing incremental policy gradient method that uses

the reparametrization gradient estimator

$A'(\mathcal{S}') - Q_{\phi}(S, A_{\theta})$

$$
\delta \leftarrow R + \gamma(Q_{\phi}(S', A') - \eta \log \pi_{\theta}(A))
$$

$$
\phi \leftarrow \phi + \alpha_Q \delta \nabla_{\phi} Q_{\phi}(S, a) \big|_{a = A_{\theta}}
$$

 $\theta \leftarrow \theta + \alpha_{\pi} \nabla_{\theta} (Q_{\phi}(S, A_{\theta}) - \eta \log \pi_{\theta}(A_{\theta} | S))$

// Critic Update

// Actor Update

// TD Error

Normalization and Scaling

- We use three normalization and scaling techniques in AVG
	- Observation Normalization
	- Normalization of the Penultimate Layer Feature Activations
	- Scaling the Temporal Difference (TD) Error
-

• These techniques are essential for maintaining good learning dynamics, reducing instability, improving plasticity, and resolving issues related to the scale of large bootstrapped targets

AVG is the only incremental method that learns effectively, often achieving final performance comparable to batch policy gradient methods

AVG enabled us to show for the first time effective deep RL with real robots using only incremental updates

Create-Mover Policy After 100K Steps (1x)

Reward: Moving Forward

Learned Solely on Onboard Computer (Jetson Nano)

UR-Reacher-2 Policy After 400K Steps (1x)

Reward: Distance Penalty + Precision Bonus

Thank You :)

https://github.com/gauthamvasan/avg $\boldsymbol{\Theta}$ https://gauthamvasan.github.io/

Masan@ualberta.ca \bigoplus

