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Task: Identifying spatio-temporal drivers of measurable impacts of extreme events.

Overview:
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Method:

Objective Function:
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min
𝜃, 𝜙, 𝜓

 ℒ(𝑒𝑥𝑡𝑟𝑒𝑚𝑒) 𝐄𝑣, 𝐄, 𝐒  + ℒ(𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒) 𝐙𝐥  +  ℒ(𝑑𝑟𝑖𝑣𝑒𝑟) 𝐙𝑞 𝐄𝑡 , 𝐒, 𝐙𝑞=𝟎

predicts extremes
from drivers

encourages confident
quantization

assigns drivers to the same 
code in the codebook
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ℒ(𝑒𝑥𝑡𝑟𝑒𝑚𝑒) 𝐄𝑣 , 𝐄, 𝐒 = − 

𝑣

𝑉+1

 ( 𝐄 log 𝐄𝑣 + 1 − 𝐄  log(1 − 𝐄𝑣)) 𝐒

ground truth predicted extremes from variable 𝑣, 
where 𝐄𝑣=0 is the multivariate prediction

mask of valid pixels

𝐄 𝐄𝑣 𝐒
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ℒ(𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒) 𝐙𝑙 = 𝜆𝑐 𝐙𝑙 − sg(sign(𝐙𝑙)) 2
2 + 𝜆𝑒  𝔼 𝐻 sign 𝐙𝑙 − 𝜆𝑑  𝐻[𝔼(sign 𝐙𝑙 )]

entropystop gradientweight

z𝑙

M
LPFeature 

embeddings −1

+1

0

−1.5

Commitment loss

z𝑙

+1

0
−0.7

Entropy per Sample

−1 z𝑙

+1−1

Codebook entropy

z𝑙

sign(z𝑙) z𝑙

𝑝(z𝑙)
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Synthetic data:
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⸙ How to reliably measure the accuracy of identifying drivers? 
 
           We introduce a new synthetic dataset

⸙ The synthetic data are based on real-world climate signals (i.e., mean value at specific time and location).
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⸙ How to reliably measure the accuracy of identifying drivers? 
 
           We introduce a new synthetic dataset

⸙ The synthetic data are based on real-world climate signals (i.e., mean value at specific time and location).
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Qualitative results on the synthetic CERRA reanalysis:
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Comparison to baselines:
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Anomaly detection results on the synthetic CERRA reanalysis.

Baselines: interpretable forecasting, one-class unsupervised, reconstruction-based, and multiple instance learning.
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Real-world data:

⸙ We conducted experiments on two real-world reanalysis (ERA5-Land and CERRA) including data from five continents.

⸙ Data:

• ERA5-Land Reanalysis (1981 – 2024)

• CERRA Reanalysis (1984 – 2021)

⸙ Reanalysis data include variables such as:

2-meter temperature (t2m) 
2-meter relative humidity (r2)
2-meter dewpoint temperature (d2m) 
volumetric soil moisture (swv)  
skin temperature (skt)
soil temperature (stl)                  albedo (al)
total cloud cover (tcc)                surface pressure (sp) 
total evaporation (e)                   total precipitation (tp) 

%
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Qualitative results on real-world ERA5-Land reanalysis:

Observed
extreme droughts at ∆t0

Total evaporation

Soil moisture

Predicted
extreme droughts at ∆t0

Time
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