

Animal-Bench: Benchmarking Multimodal Video Models for Animal-centric Video Understanding

Yinuo Jing¹, Ruxu Zhang¹, Kongming Liang^{1™}, Yongxiang Li², Zhongjiang He², Zhanyu Ma¹, Jun Guo¹

¹School of Artificial Intelligence, Beijing University of Posts and Telecommunications ²China Telecom Artificial Intelligence Technology Co. Ltd

for Animal-centric Video Understanding

- 1. Background
- 2. Movitation
- 3. Method
- 4. Experiments
- 5. Conclusion

for Animal-centric Video Understanding

Outline

1. Background

- 2. Movitation
- 3. Method
- 4. Experiments
- 5. Conclusion

Background

• Technological development: from **basic singular** capabilities to **multimodal comprehensive** abilities

• Benchmark developments: from single-task to multi-dimensional evaluation

Animal-Bench: Benchmarking Multimodal Video Models for Animal-centric Video Understanding

for Animal-centric Video Understanding

Outline

1. Background

2. Movitation

- 3. Method
- 4. Experiments
- 5. Conclusion

Motivation

human animal object
The data quantity for different agents in each task of MVBench

Bonchmorks	Dataset Properties			Tacks
Deneminarks	Label QA Size		Agent(main)	14585
Video-MME 36	Multi-Choice QA	2700 QAs	Human & Object	object, action, attribute, position, count, time, reasoning, summarization, etc.
Video-Bench [11]	Multi-Choice QA	15,033 QAs	Human & Object	action, object, attribute, position, count, time, reasoning, etc.
MVBench 3	Multi-Choice QA	4000 QAs	Human & Object	action, object, position, count, scene, pose, attribute, character and cognition
Animal Kingdom [37]	Classification	N/A	Animal	object, action, time
MammalNet [38]	Classification	N/A	Animal	object, action

Comparison Table of Existing Video Understanding Evaluation Benchmarks

- Existing benchmarks focus on humans or objects, while animal-centric datasets assess only limited model capabilities.
- Animal-related tasks are challenging due to species diversity and environmental complexity, with low data leakage risk, making them ideal for testing model robustness.
- Animal-centric evaluation research is vital for monitoring ecosystem health and supporting timely interventions, which is of significant importance for wildlife conservation.

for Animal-centric Video Understanding

- 1. Background
- 2. Movitation
- 3. Method
- 4. Experiments
- 5. Conclusion

Previous: limited agent & simplified and unrealistic scenarios **Animal-Bench:** various animal agent & scenarios & tasks

Animal-Bench Tasks and Data Composition

Animal-Centric Tasks System

- **Common tasks** shared with human video benchmarks, such as object detection, action recognition, counting, and reasoning
- Specific tasks related to wildlife conservation

Animal-Bench Task Examples

Animal-Bench: Benchmarking Multimodal Video Models for Animal-centric Video Understanding

Animal-Centric Data Processing Pipeline

- Data Filtering: ensuring data diversity and temporal sensitivity
- **QA Pair Generation:** *ensuring moderate difficulty of questions and options*

Automated Data Filtering and QA Generation Pipeline

Realistic Simulation based on Video Editing

- Weather conditions, including snowy and frosty
- Shooting parameters, including shooting distance and shooting direction

Simulation process for shooting parameters

for Animal-centric Video Understanding

- 1. Background
- 2. Movitation
- 3. Method
- 4. Experiments
- 5. Conclusion

Effectiveness evaluation results

	Multimodal Video Model									
Task	Random	mPLUG	Video	Video	Video	Valley [64]	Chat	Video	Video	Avg
	95% confidence interval	-Owl [44]	Chat 62	-ChatGPT 63	-LLaMA 8	vancy [04]	-UniVi 65	-LLaVA 4	Chat2 3	
OE	33.32 ± 0.46	42.20	49.40	44.65	49.20	41.70	44.65	45.90	50.00	45.96
OR	24.96 ± 0.19	33.62	51.61	24.31	60.23	25.06	43.25	40.55	86.75	45.67
AR	25.26 ± 0.17	27.00	32.54	24.28	35.34	24.56	32.98	31.71	66.27	34.34
AS	26.12 ± 1.23	25.86	32.76	22.41	29.74	27.16	33.19	25.86	54.31	31.41
AP	24.16 ± 1.31	25.48	27.88	24.52	29.81	28.37	27.88	28.37	50.00	30.29
AL	25.49 ± 0.39	24.49	23.25	21.22	24.67	25.45	24.14	24.32	21.22	23.60
OC	25.17 ± 1.18	24.14	27.59	24.71	26.44	25.29	31.61	31.03	64.94	31.97
AC	25.06 ± 0.37	24.43	25.51	22.92	24.99	23.78	24.34	22.49	29.16	24.70
RS	19.46 ± 0.71	22.38	27.07	25.69	35.08	22.65	36.46	21.27	68.23	32.35
Special Task										
PM	33.58 ± 0.41	43.19	48.00	44.88	50.68	40.28	49.70	45.37	52.44	46.82
BM	33.63 ± 1.21	39.31	50.29	43.35	47.98	44.80	48.84	42.20	47.69	45.56
SA	33.22 ± 0.54	41.08	48.87	47.23	49.47	42.96	48.18	44.16	52.42	46.80
PD	33.15 ± 1.55	40.56	47.55	46.85	50.35	38.46	44.06	45.80	54.20	45.98
Overall Performance										
Avg	27.89 ± 2.90	31.83	37.87	32.08	39.54	31.58	37.64	34.54	53.66	37.34

- Recently released models like VideoChat2 surpass previous methods in most tasks.
- Existing models need to enhance their **temporal modeling capabilities**.

The evaluation results of 8 multimodal video models on our Animal-Bench

Robustness evaluation results

Models	Weather condition		Shooting	Overall		
	Snow	Frost	Distance	Direction		
VideoChat2	1.49	2.17	4.76	6.39	3.70	
Video-LLaMA	5.41	7.46	10.82	11.19	8.72	
VideoChat	7.43	4.41	5.22	8.63	6.42	
Chat-UniVi	5.04	1.81	3.83	7.86	4.64	

Sensitivity of multimodal video models to different variations(relative accuracy drop(%))

Average decrease in model accuracy(%) across four types of variations

- VideoChat2 demonstrated relatively good robustness
- VideoLLMs are more sensitive to **shooting parameters** than to changes in weather changes

Animal-Bench: Benchmarking Multimodal Video Models for Animal-centric Video Understanding

Experiments

Further discussion

Animal category bias

■VideoChat2 ■Chat-UniVi ■Video-LLaMA ■Video-LLaVA ■VideoChat ■mPLUG-Owl ■Valley ■Video-ChatGPT ■Avg

➢ Model structure

- Object Recognition: higher accuracy for the "mammal" and "bird", while lower accuracy for "amphibian" and "reptile"
- Action Recognition: higher accuracy for "fish" and "mammal"

- Employing more powerful video encoders is of significant importance for the development of multi-modal video models
- The impact of **the temporal modeling module** may **not be as significant as expected**

for Animal-centric Video Understanding

- 1. Background
- 2. Movitation
- 3. Method
- 4. Experiments
- 5. Conclusion

- We established Animal-Bench, an **animal-centric benchmark**, to enable **comprehensive evaluation** of model capabilities in real-world contexts and overcome agent-bias in previous benchmarks.
- Animal-Bench includes **13 tasks** covering both common human-related tasks and special tasks for animal conservation, spanning 7 animal categories and 819 species, with 41,839 data entries.
- We defined a **task system** centered on animals and proposed **an automated pipeline** for processing animal-centric data.
- We applied a video editing approach to simulate realistic scenarios, such as weather changes and shooting parameters, caused by animal movements, to test model robustness.
- We evaluated **8 current multimodal video models** on Animal-Bench and identified **significant room for improvement**, aiming to provide insights and open new research avenues for multimodal video models.

Animal-Bench: Benchmarking Multimodal Video Models for Animal-centric Video Understanding

Yinuo Jing¹, Ruxu Zhang¹, Kongming Liang^{1™}, Yongxiang Li², Zhongjiang He², Zhanyu Ma¹, Jun Guo¹

Our data and code will be released at https://github.com/PRIS-CV/Animal-Bench