

Contextual Decision-Making with Knapsacks Beyond the Worst Case

Zhaohua Chen¹, Rui Ai², Mingwei Yang³, Yuqi Pan⁴, Chang Wang⁵, and Xiaotie Deng¹

NeurIPS 2024

¹Peking University, ²MIT, ³Stanford University, ⁴Harvard University, ⁵Northwestern University

Model

A warehouse

Resource inventory: $\boldsymbol{B} = \boldsymbol{\rho} \cdot T$, *n* resources

Stochastic request $\theta_t \in [k]$: Deliver goods to places Action $a_t \in A = [m] \cup \{0\}$: Choose a way to deliver (A^+) , or reject Stochastic external factor γ_t : Affects the resource cost and reward

Consumes resources $c(\theta_t, a_t, \gamma_t)$, receives reward $r(\theta_t, a_t, \gamma_t)$.

Goal: maximize total reward under

the initial resource constraint!

Model

Stochastic request $\theta_t \in [k]$: Deliver goods to places Stochastic external factor γ_t : Affects the resource cost and reward

 \Box Unknown distribution for request θ and external factor γ !

- □ Information model:
- **[Full feedback.]** Always learns γ_t after the round.

- 0
- **[Partial feedback.]** Learns γ_t only when a_t is not a reject.

Previous Methods

Best-policy method [ADL16, ...]

- Pick the best policy in a UCB manner
- An $O(\sqrt{mT \log nT})$ regret
- Dual-update method [SSF23, ...]
 - Lagrangian-based control with regression oracle
 - An $O(\sqrt{nT \log nT})$ regret
- □ Work with bandit feedback, but under certain assumptions

Our method: re-solving-based

- *m*: number of actions
- *n*: number of resources
- *k*: size of request space

Benchmarks

Online optimum (V^{ON}) is hard to compute and analyze!
Fluid optimum (V^{FL}): maximum expected reward under the expected resource constraint. Often used as the benchmark. V^{FL} ≥ V^{ON}.

$$V^{\mathrm{FL}} \coloneqq T \cdot \max_{\phi} \mathbb{E}_{\theta} \left[\sum_{a \in A^{+}} \mathbb{E}_{\gamma} [r(\theta, a, \gamma)] \phi(\theta, a) \right],$$

s.t. $\mathbb{E}_{\theta} \left[\sum_{a \in A^{+}} \mathbb{E}_{\gamma} [c(\theta, a, \gamma)] \phi(\theta, a) \right] \leq \rho;$
 $\sum_{a \in A^{+}} \phi(\theta, a) \leq 1, \forall \theta; \quad \phi(\theta, a) \geq 0, \forall \theta, a.$

Theorem. When V^{FL} has a unique and degenerate optimal solution, $V^{\text{FL}} - V^{\text{ON}} = \Omega(\sqrt{T})$.

The Re-Solving Heuristic

In each round *t*:

- Solve the approximated fluid optimum *Ĵ*(*ρ_t*) with respect to the remaining average resource constraint *ρ_t* and estimated distributions of the request and external factor, and obtain *φ̂_t*.
- Observe θ_t , and act according to the distribution $\hat{\phi}_t(\theta_t, \cdot)$.
- Update estimated distributions according to the observation.

$$\hat{J}(\boldsymbol{\rho}_{t}) \coloneqq T \cdot \max_{\hat{\phi}_{t}} \mathbb{E}_{\boldsymbol{\theta}} \left[\sum_{a \in A^{+}} \mathbb{E}_{\boldsymbol{\gamma}} [r(\boldsymbol{\theta}, a, \boldsymbol{\gamma})] \hat{\phi}_{t}(\boldsymbol{\theta}, a) \right],$$

s.t.
$$\mathbb{E}_{\boldsymbol{\theta}} \left[\sum_{a \in A^{+}} \mathbb{E}_{\boldsymbol{\gamma}} [\boldsymbol{c}(\boldsymbol{\theta}, a, \boldsymbol{\gamma})] \hat{\phi}_{t}(\boldsymbol{\theta}, a) \right] \leq \boldsymbol{\rho}_{t}; \quad \sum_{a \in A^{+}} \hat{\phi}_{t}(\boldsymbol{\theta}, a) \leq 1, \forall \boldsymbol{\theta}; \quad \hat{\phi}_{t}(\boldsymbol{\theta}, a) \geq 0, \forall \boldsymbol{\theta}, a.$$

The Re-Solving Heuristic -- Guarantee

- **Given Series of Contract and Series and Ser**
- Stability factor $D: L_{\infty}$ distance of the fluid program to any program with non-unique or degenerate solution(s).
 - Full feedback: $O\left(\frac{n^2+k}{D^2}\right)$ gap to the fluid optimum.
 - Partial feedback: $O\left(\frac{n^2 + k + \log T}{D^2}\right)$ gap to the fluid optimum.

The Re-Solving Heuristic -- Guarantee

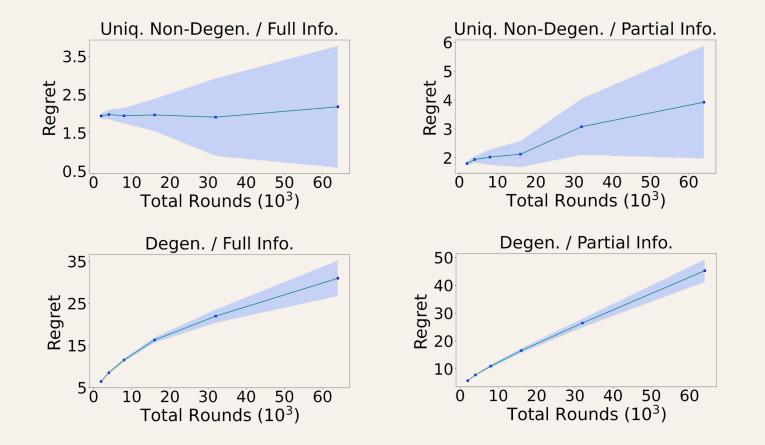
No assumption on the fluid program

- Full feedback: $O(k\sqrt{T \log T} + n)$ gap to the fluid optimum.
- Partial feedback: $O(k\sqrt{T}\log T + n)$ gap to the fluid optimum.

Can be generalized to continuous randomness

With non-parameterized estimation methods

Numerical Validations



Thank you!