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Divergences between LMs and Human Brains

• Brain activity data collected using MEG while participants 
listened to or read narratives

• Language model embeddings generated from GPT-2 XL 
(1.5B) and Llama-2 7B

• Ridge regression with cross-validation used to compute 
prediction error per word

Image Source: 

https://www.mrn.org/collabo

rate/elekta-neuromag-meg
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Automatic Hypothesis Proposer

• Natural language hypotheses that explain the differences between two 
text corpora (D0, D1) are generated using a proposer-verifier system 
(Zhong et al., 2023)

• GPT-3 (Brown et al. ,2020) serves as the proposer, generating hypotheses 
on how corpus D0 differs from D1

• FLAN-T5-XXL (Chung et al., 2022) acts as the verifier, evaluating and ranking 
hypotheses
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Hypotheses

Two topics: Social/Emotional Intelligence and Physical Commonsense

Validity measures the difference in certainty that the hypothesis is true between the two corpora, see (Zhong et al., 2023) for details 
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Can targeted fine-tuning improve LM-brain 
alignment?

Hypothesis

LMs fail to predict brain responses due to limited representations of 
social/emotional understanding and physical world knowledge

Prediction

Fine-tuning on domain-specific data will enhance LMs' alignment with 
human brain activity
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Fine-tuning

Each multiple-choice option is concatenated with the question to format it 
as a language modeling task
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Performance comparison of the base model with 
fine-tuned models

y-axis shows the percentage of MEG channels in the fine-tuned model with better, worse, or non-
significantly different performance (measured by Pearson correlation) compared to the base 
model

x-axis is the time relative to word onset

Social/Emotional Intelligence

Physical Commonsense

human language processing window
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Fine-tuning improves alignment more for words 
annotated with that category

Comparison of improved MSE between (A) social and (B) physical words and those outside each 
category evaluated on models fine-tuned on corresponding datasets. Positive values denote 
lower MSEs in the fine-tuned model. 

Social/Emotional Intelligence Physical Commonsense
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Takeaways

• LMs differ from human language processing in social/emotional 
intelligence and physical commonsense

• The observed divergences between LMs and human brain activity may 
stem from LMs’ inadequate representation of these specific types of 
knowledge

• Fine-tuning LMs on tasks related to the two identified topics can align 
them better with human brain responses
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