

Spectral Learning of Shared Dynamics between Generalized-Linear Processes

Lucine L. Oganesian, Omid G. Sani, & Maryam M. Shanechi NeurIPS 2024

Generalized-linear dynamical models are useful for modeling time-series

Most existing GLDM models and their associated learning algorithms only model a single source.

Some applications require joint modeling of two generalized-linear time-series.

Joint GL time-series have shared and private dynamics

Dynamics private to the primary time-series

Shared dynamics

Dynamics private to the secondary time-series

PGLDM (prioritized generalized-linear dynamical modeling): a multi-step, subspace identification algorithm for explicitly modeling shared vs private dynamics between two generalized-linear time-series

Partition dynamics using a block-structure latent model definition

PGLDM multi-stage learning dissociates shared from private dynamics

Stage 1. Given shared latent dimensionality n_1 , secondary projection z future, and primary projection r past: learn the shared dynamics.

PGLDM multi-stage learning dissociates shared from private dynamics

Stage 3. Given private latent dimensionality n_3 and secondary projection z future and past: learn the **dynamics private to** z, { A_{33} , $C_z^{(3)}$ }.

Extending to the generalized-linear case using moment conversion

Algorithm relies on cross-covariances between future and past intermediate linear observations r and z

r and *z* are latent in the generalized-linear case

Instead, primary and secondary generalized-linear time-series y and t (potentially discrete) are observed

How can future-past cross-covariances $H_{zr} = Z_f R_p^T$ and $H_r = R_f R_p^T$ be computed?

 $\begin{vmatrix} x_{k+1}^{(2)} \\ x_{k+1}^{(2)} \\ \mathbf{x}^{(3)} \end{vmatrix} = \begin{bmatrix} A_{11} & \mathbf{0} & \mathbf{0} \\ A_{21} & A_{22} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & A_{33} \end{bmatrix} \begin{vmatrix} x_k^{(2)} \\ x_k^{(2)} \\ \mathbf{x}^{(3)} \end{vmatrix} + w_k$ $\boldsymbol{r}_{k} = \begin{bmatrix} \boldsymbol{C}_{r}^{(1)} & \boldsymbol{C}_{r}^{(2)} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{k}^{(1)} \\ \boldsymbol{x}_{k}^{(2)} \\ \boldsymbol{x}_{k}^{(3)} \end{bmatrix} + \boldsymbol{v}_{k} + \boldsymbol{b}$ $\mathbf{z}_{k} = \begin{bmatrix} \boldsymbol{C}_{z}^{(1)} & \mathbf{0} & \boldsymbol{C}_{z}^{(3)} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{k}^{(1)} \\ \boldsymbol{x}_{k}^{(2)} \\ \boldsymbol{x}_{k}^{(3)} \end{bmatrix} + \boldsymbol{\epsilon}_{k} + \boldsymbol{d}$ $\mathbf{y}_k | \mathbf{r}_k \sim \overline{P_{y|r}(\mathbf{y}_k; g(\mathbf{r}_k))}$ $\mathbf{t}_k \mid \mathbf{z}_k \sim P_{t|z}(\mathbf{t}_k; h(\mathbf{z}_k))$

Buesing et al., NeurIPS, 2012

PGLDM more accurately identified shared modes across most generalized-linear observation pairs

	Primary time-series $(r_k \text{ or } y_k)$ / Secondary time-series $(z_k \text{ or } t_k)$			
Method Name	Gaussian/Gaus.	Poisson/Gaus.	Pois./Pois.	Bernoulli/Gaus.
PGLDM (stage 1) -2.757 ± 0.070	-2.707± 0.09	-1.969 ± 0.07	-2.864± 0.072
Laplace-EM PSID (stage 1) Covariance SSID PLDSID	-1.320 ± 0.09 -2.985 ± 0.102 -1.467 ± 0.080 X	-1.083 ± 0.11 X X -1.319 ± 0.132	-1.088 ± 0.11 X X -1.203 ± 0.112	-1.027 ± 0.067 X X X X
bestLDS	Х	X	Х	-1.209 ± 0.117

Normalied
eigenvalue error
$$\frac{||\widehat{M} - M||_2}{||M||_2}$$
$$M \triangleq [\lambda_{z_1} \cdots \lambda_{z_m}]$$

Modeling shared dynamics improves secondary time-series decoding performance

Poisson primary time-series y_k

Conclusions

- We developed and validated PGLDM, a novel analytical subspace identification algorithm for explicitly modeling shared vs private dynamics between two generalized-linear time-series
- Because PGLDM more accurately dissociated shared from private dynamics, models learned by PGLDM more accurately decoded a secondary time-series from a primary time-series using lowerdimensional latent models
- We also demonstrated that PGLDM can be used with any combination of generalized-linear observation pairs -- as long as there exists computationally tractable moment conversion equations

Acknowledgments

Shanechi Lab

Thank you for your attention!