

Spectral Learning of Shared Dynamics between Generalized-Linear Processes

Lucine L. Oganesian, Omid G. Sani, & Maryam M. Shanechi NeurIPS 2024

Generalized-linear dynamical models are useful for modeling time-series

Most existing GLDM models and their associated learning algorithms only model a single source.

Some applications require joint modeling of two generalized-linear time-series.

Joint GL time-series have shared and private dynamics

Latent dynamical states

PGLDM (prioritized generalized-linear dynamical modeling): a multi-step, subspace identification algorithm for explicitly modeling shared vs private dynamics between two generalized-linear time-series

Partition dynamics using a block-structure latent model definition

PGLDM multi-stage learning dissociates shared from private dynamics

Stage 1. Given shared latent dimensionality n_1 , secondary projection z future, and primary projection r past: learn the **shared dynamics**.

PGLDM multi-stage learning dissociates shared from private dynamics

Stage 3. Given private latent dimensionality n_3 and secondary projection \bf{z} future and past: learn the dynamics private to $z,$ $\{A_{33},$ $C^{(3)}_{\text{z}}\}$.

Extending to the generalized-linear case using moment conversion

Algorithm relies on cross-covariances between future and past intermediate linear observations \bm{r} and \bm{z}

 r and z are latent in the generalized-linear case

Instead, primary and secondary generalized-linear time-series \bf{y} and \bf{t} (potentially discrete) are observed

How can future-past cross-covariances $\bm{H}_{\bm{z}\bm{r}}=\bm{Z}_f\bm{R}_{p}^{T}$ and $\bm{H}_{\bm{r}}=\bm{R}_f\bm{R}_{p}^{T}$ be computed?

 $x_{k+1}^{\left(1\right) }$ $x_{k+1}^{\left(2\right) }$ $x_{k+1}^{\left(3\right) }$ = A_{11} 0 0 A_{21} A_{22} 0 0 0 A_{33} $x_k^{(1)}$ $x_k^{(2)}$ $x_k^{(3)}$ $+ w_k$ $r_k = \begin{bmatrix} c_r^{(1)} & c_r^{(2)} & 0 \end{bmatrix}$ $x_k^{(1)}$ $x_k^{(2)}$ $x_k^{(3)}$ $+ v_k + b$ $z_k = \begin{bmatrix} c_z^{(1)} & 0 & c_z^{(3)} \end{bmatrix}$ $x_k^{(1)}$ $x_k^{(2)}$ $x_k^{(3)}$ $+$ ϵ_k + d $y_k | r_k \sim P_{y|r}(y_k; g(r_k))$ $\boxed{t_k}$ $\boxed{z_k}$ ~ $P_{t|z}(t_k; h(z_k))$

Buesing et al., NeurIPS, 2012

Shared dynamics identified more accurately in simulations

PGLDM more accurately identified shared modes across most generalized-linear observation pairs

Normalied

\n
$$
\frac{||\hat{M} - M||_2}{||M||_2}
$$
\neigenvalue error

\n
$$
M \triangleq [\lambda_{z_1} \cdots \lambda_{z_m}]
$$

Modeling shared dynamics improves secondary time-series decoding performance

Poisson primary time-series v_k

Conclusions

- We developed and validated PGLDM, a novel analytical subspace identification algorithm for explicitly modeling shared vs private dynamics between two generalized-linear time-series
- Because PGLDM more accurately dissociated shared from private dynamics, models learned by PGLDM more accurately decoded a secondary time-series from a primary time-series using lowerdimensional latent models
- We also demonstrated that PGLDM can be used with any combination of generalized-linear observation pairs -- as long as there exists computationally tractable moment conversion equations

Acknowledgments

Shanechi Lab

Thank you for your attention!