

Membership Inference on Text-to-Image Diffusion Models via Conditional Likelihood Discrepancy

Shengfang Zhai, Huanran Chen, Yinpeng Dong[™], Jiajun Li,

Qingni Shen[™], Yansong Gao, Hang Su, Yang Liu

Content

- Motivation: Why we need *Membership Inference (MI)* for T2I models?
- + Background
- Key intuition: Conditional Overfitting
- Methods
- Experiments
- Conclusion

Diffusion models

Training objective is simple (MSE loss, Evidence Lower Bound)

Unconditional Diffusion Models (DDPM):

Conditional Diffusion Models (T2I Models):

$$\log p_{\theta}(\mathbf{x}_{0}) \geq \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \right] = -\mathbb{E}_{\epsilon,t} \left[||\epsilon_{\theta}(\mathbf{x}_{t}, t) - \epsilon||^{2} \right] + C,$$

$$\log p_{\theta}(\mathbf{x}_0 | \mathbf{c}) \ge -\mathbb{E}_{\epsilon, t} \left[||\epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{c}) - \epsilon||^2 \right] + C.$$

Simple but effective.

Prompt: A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective,...

Membership Inference on Text-to-Image Diffusion Models via Conditional Likelihood Discrepancy 24'NeurIPS

Why we need *Membership Inference* on Text-to-image diffusion models?

Unauthorized data usage auditing:
Issues about copyright infringement ^[1,2,3...]

➢ Exploring memorization in T2I models:

[1] BBC. "Art is dead Dude" - the rise of the AI artists stirs debate. 2022. URL https://www.bbc.com/news/technology-62788725.

[2] CNN. AI won an art contest, and artists are furious. 2022. URL https://www.cnn.com/2022/09/03/ tech/ai-art-fair-winner-controversy/index.html.

[3] Reuters. Lawsuits accuse AI content creators of misusing copyrighted work. 2023. URL https://www.reuters.com/legal/transactional/ lawsuits-accuse-ai-content-creators-misusing-copyrighted-work-2023-01-17/.

[4] WashingtonPost. He made a children's book using AI. Then came the rage. 2022. URL https://www.washingtonpost.com/technology/2023/01/19/ ai-childrens-book-controversy-chatgpt-midjourney/.

Membership Inference:

Is this data point used to train the target model?

In **traditional tasks**:

For a given data point **x**:

$$\mathcal{M}(\mathbf{x}, f_{\theta}) = \mathbb{1}\left[\mathcal{M}'(\mathbf{x}, f_{\theta}) > \tau\right]$$

In **text-to-image synthesis**: For a given data pair (image, text) \rightarrow (**x**, **c**)

$$\mathcal{M}(\mathbf{x}, \mathbf{c}, f_{\theta}) = \mathbb{1}\left[\mathcal{M}'(\mathbf{x}, \mathbf{c}, f_{\theta}) > \tau\right]$$

Are existing works good enough?

>Only targeting at small-scale diffusion model ^[1] (NOT text-to-image)

- ➤Unrealistic evaluation setting
 - 1. Over-training
 - 2. Distribution shift

→ Hallucination of success!

Methods	Evaluation (Fine-tuning)	Evaluation (Pretraining)
SecMI ^[2]	~ 60 Epochs (Over-training)	LAION / COCO as mem/hold-out set (Different distribution)
PIA ^[3]	N/A	LAION / COCO as mem/hold-out set (Different distribution)
PFAMI ^[4]	~ 60 Epochs (Over-training)	LAION / COCO as mem/hold-out set (Different distribution)

[1] Nicolas Carlini et al. Extracting training data from diffusion models. In 32nd USENIX Security Symposium (USENIX Security 23)

[2] Jinhao Duan et al. Are diffusion models vulnerable to membership inference attacks? In International Conference on Machine Learning, 2023.

[3] Fei Kong et al. An efficient membership inference attack for the diffusion model by proximal initialization. In The Twelfth International Conference on Learning Representations, 2024

[4] Wenjie Fu et al. A probabilistic fluctuation based membership inference attack for generative models. arXiv preprint arXiv:2308.12143, 2023

Observation: T2I training process involves Conditional Overfitting.
Training overfitting:

$$D(q_{\text{mem}}(\mathbf{x}), p(\mathbf{x})) \le D(q_{\text{out}}(\mathbf{x}), p(\mathbf{x}))$$

Conditional overfitting:

FID (Fréchet Inception Distance)

 $D(q_{out}(\mathbf{x}|\mathbf{c}), p(\mathbf{x}|\mathbf{c})) - D(q_{mem}(\mathbf{x}|\mathbf{c}), p(\mathbf{x}|\mathbf{c}))] \ge D(q_{out}(\mathbf{x}), p(\mathbf{x})) - D(q_{mem}(\mathbf{x}), p(\mathbf{x}))$ $\mathbb{E}_{\mathbf{c}}$

overfitting to conditional distribution

overfitting to marginal distribution

CLiD (Conditional Likelihood Discrepancy)

Using Kullback-Leibler (KL) divergence as the distance metric, we can get (Proof in Appendix B):

$$\mathbb{E}_{q_{mem}(\mathbf{x},\mathbf{c})}[\log p(\mathbf{x}|\mathbf{c}) - \log p(\mathbf{x})] \ge \mathbb{E}_{q_{out}(\mathbf{x},\mathbf{c})}[\log p(\mathbf{x}|\mathbf{c}) - \log p(\mathbf{x})] + \delta_H$$

Ignoring δ_{H} , we have the indicator *CLiD*:

$$\mathbb{I}(\mathbf{x}, \mathbf{c}) = \log p(\mathbf{x} | \mathbf{c}) - \log p(\mathbf{x})$$

Using ELBOs to approximate likelihood:

$$\mathbb{I}(\mathbf{x}, \mathbf{c}) = \mathbb{E}_{t,\epsilon} \left[||\epsilon_{\theta}(\mathbf{x}_{t}, t, \mathbf{c}_{\text{null}}) - \epsilon||^{2} \right] - \mathbb{E}_{t,\epsilon} \left[||\epsilon_{\theta}(\mathbf{x}_{t}, t, \mathbf{c}) - \epsilon||^{2} \right]$$

To simplify computation, we directly estimate likelihood difference by Monte Carlo Sampling [1]:

$$\mathbb{I}(\mathbf{x}, \mathbf{c}) = \mathbb{E}_{t,\epsilon} \left[||\epsilon_{\theta}(\mathbf{x}_{t}, t, \mathbf{c}_{\text{null}}) - \epsilon||^{2} - ||\epsilon_{\theta}(\mathbf{x}_{t}, t, \mathbf{c}) - \epsilon||^{2} \right]$$

CLiD-MI

$$\mathcal{D}_{\mathbf{x},\mathbf{c},\mathbf{c}_{i}^{*}} = \mathbb{E}_{t,\epsilon} \left[||\epsilon_{\theta}(\mathbf{x}_{t},t,\mathbf{c}_{i}^{*}) - \epsilon||^{2} - ||\epsilon_{\theta}(\mathbf{x}_{t},t,\mathbf{c}) - \epsilon||^{2} \right], \ \mathbb{C} = \{\mathbf{c}_{1}^{*},\mathbf{c}_{2}^{*}...,\mathbf{c}_{k}^{*}\}$$
$$\mathcal{L}_{\mathbf{x},\mathbf{c}} = -\mathbb{E}_{t,\epsilon} \left[||\epsilon_{\theta}(\mathbf{x}_{t},t,\mathbf{c}) - \epsilon||^{2} \right]$$

• Threshold-based CLiD_{th}:

$$\mathcal{M}_{\mathrm{CLiD}_{th}}(\mathbf{x}, \mathbf{c}) = \mathbb{1}\left[\alpha \cdot \mathcal{S}(\frac{1}{k} \sum_{i}^{k} \mathcal{D}_{\mathbf{x}, \mathbf{c}, \mathbf{c}_{i}^{*}}) + (1 - \alpha) \cdot \mathcal{S}(\mathcal{L}_{\mathbf{x}, \mathbf{c}}) > \tau\right]$$

• Vector-based CLiD_{vec}:

$$\mathbf{V} = \left(\mathcal{D}_{\mathbf{x},\mathbf{c},\mathbf{c}_{1}^{*}}, \mathcal{D}_{\mathbf{x},\mathbf{c},\mathbf{c}_{2}^{*}} \dots \mathcal{D}_{\mathbf{x},\mathbf{c},\mathbf{c}_{k}^{*}}, \mathcal{L}_{\mathbf{x},\mathbf{c}} \right)$$
$$\mathcal{M}_{\mathrm{CLiD}_{vec}}(\mathbf{x},\mathbf{c}) = \mathbb{1} \left[\mathcal{F}_{\mathcal{M}}(\mathbf{V}) > \tau \right]$$

Main Experiments

- ➤Settings
 - Fine-tuning (Over-training): consistent with exiting works
 Data (member/hold-out set Size): Pokemon (~400), COCO (2500), Flickr (2500);
 Training steps: 15,000, 150,000, 150,000
 No augmentation.
 - 2. Fine-tuning (Real-world training): following Huggingface scripts ^[1] Data (member/hold-out set Size): Pokemon (~400), COCO (2500), Flickr (100,000); Training steps: 7,500, 50,000, 200,000 Default augmentation.
 - 3. Pretraining (Ensuring the distribution consistency).
- Metrics
 - ASR, AUC, TPR@1%FPR

[1] Huggingface. The training script of stable-diffusion, 2024. URL https://huggingface.co/docs/diffusers/training/text2image#launch-the-script. Accessed: May 22, 2024.

Table 1: Results under *Over-training* setting. We mark the best and second-best results for each metric in **bold** and <u>underline</u>, respectively. Additionally, the best results from baselines are marked in blue for comparison.

Mathad	MS-COCO			Flickr			Pokemon			Ouerry
Method	ASR	AUC	TPR@1%FPR	ASR	AUC	TPR@1%FPR	ASR	AUC	TPR@1%FPR	Query
Loss	81.92	89.98	32.28	81.90	90.34	40.80	83.76	91.79	25.77	1
PIA	68.56	75.12	5.08	68.56	75.12	5.08	83.37	90.95	13.31	2
M. C.	82.04	89.77	36.04	83.32	91.37	41.20	79.35	86.78	23.74	3
SecMI	83.00	90.81	50.64	62.96^{\dagger}	89.29	48.52	80.49	90.64	9.36	12
PFAMI	94.48	98.60	78.00	90.64	96.78	50.96	89.86	95.70	65.35	20
CLiD _{th}	99.08	99.94	99.12	91.42	97.39	74.00	97.96	99.28	97.84	15
$CLiD_{vec}$	99.74	<u>99.31</u>	95.20	91.78	97.52	73.88	<u>97.36</u>	99.46	<u>96.88</u>	15

[†] When conducting SecMI [15], we observe that the thresholds obtained on the shadow model sometimes do not transfer well to the target model.

Over-training:

- 1. No obvious effectiveness difference of MI methods (Query 1 vs Query 12)
- 2. Excessive and unrealistic overfitting.

Fail to adequately reflect the effectiveness differences among various methods !

Method	MS-COCO			Flickr			Pokemon			0
	ASR	AUC	TPR@1%FPR	ASR	AUC	TPR@1%FPR	ASR	AUC	TPR@1%FPR	Query
Loss	56.28	61.89	1.92	54.91	56.60	1.83	61.03	65.96	2.82	1
PIA	54.10	55.52	1.76	51.96	52.73	1.28	58.34	59.95	2.64	2
M. C.	57.98	61.97	2.64	54.92	56.78	2.16	61.10	66.48	3.84	3
SecMI	60.94	65.40	3.92	55.60	63.85	2.76	61.28	65.56	0.84	12
PFAMI	57.36	60.39	2.72	54.68	56.13	1.80	58.94	63.53	5.76	20
CLiD _{th}	88.88	<u>96.13</u>	67.52	87.12	<u>94.74</u>	<u>53.56</u>	86.79	93.28	61.39	15
$\operatorname{CLiD}_{vec}$	89.52	96.30	<u>66.36</u>	88.86	95.33	53.92	85.47	<u>92.61</u>	<u>59.95</u>	15

Table 2: Results under *Real-world training* setting. We also highlight key results according to Tab. 1.

Mathad		Onerry			
Method	ASR	ASR AUC TPR@1%FPR		Query	
Loss	51.78	50.90	1.75	1	
PIA	52.13	52.42	1.25	2	
M. C.	53.18	53.96	1.25	3	
SecMI	57.43	58.59	2.45	12	
PFAMI	59.08	61.11	1.45	20	
$CLiD_{th}$	64.53	67.82	5.01	15	

Real-world training & Pretraining setting: *Outperforming the baselines across all three metrics*

Table 3: The performance of membership inference methods on Stable Diffusion v1-5 [47] in pretraining setting. We utilize the processed LAION dataset to ensure the distribution consistency between member / holdout sets [13, 16]. The best results are highlighted in **bold**.

Other Experiments

1. Effectiveness trajectory

Figure 2: Effectiveness trajectory on various training steps.

2. Ablation Study

Figure 3: Performance of $CLiD_{th}$ and SecMI under various Monte Carlo sampling numbers (i.e., query count). The legend labels are sorted in ascending order by AUC values.

Other Experiments

3. Resistance to Defense

Table 4: The performance of different methods under no augmentation and default augmentation.

Method		No Augn	nentation	Defaut Augmentation			
	ASR	AUC	TPR@1%FPR	ASR (Δ)	AUC (Δ)	TPR@1%FPR (Δ)	
Loss	66.54	72.73	7.72	56.28 (-10.26)	61.89 (-10.84)	1.92 (-5.80)	
PIA^{\dagger}	56.56	59.28	2.00	54.10 (-2.46)	55.52 (-3.76)	1.76 (-0.24)	
SecMI	72.02	81.07	13.72	60.94 (-11.08)	65.40 (-15.08)	3.92 (-9.80)	
PFAMI	79.20	87.05	18.44	57.36 (-21.84)	60.39 (-26.66)	2.72 (-15.72)	
$CLiD_{th}$	96.76	99.47	91.72	88.88 (-7.88)	96.13 (-3.34)	67.52 (-24.20) [‡]	

[†]We omit the discussion of PIA as it shows no effectiveness at this training steps, with the metrics consistently approximating random guessing.

[‡]The TPR@1%FPR value changes significantly here because its ROC curve is very sharp when FPR close to 0.

Stronger resistance to data augmentation

Table 5: Effectiveness of $CLiD_{th}$ in adaptive defense. We calculate the FID [20] with 10,000 unseen MS-COCO samples to assess the model utility.

Defense	CL	$\mathrm{i}\mathrm{D}_{th}$ or		
	ASR	AUC	TPR@1%FPR	$\Gamma ID \downarrow / \Delta$
None	88.88	96.13	67.52	13.17
Reph	85.32	93.83	55.67	13.58 / +0.41
Del-1	86.40	93.59	59.52	13.18 / - <mark>0.0</mark> 1
Del-3	83.91	91.52	52.03	12.92 / - <mark>0.25</mark>
Shuffle	65.89	67.37	0.15	18.26 / +5.09 [†]

[†]Compared to other methods, the increase in FID caused by shuffling is unacceptable for generative models.

Resistance to adaptive defense

Other Experiments

4. Weaker Assumption:

What if we don't have groundtruth text?

 \rightarrow Use Image-Caption model (BLIP) to generate Pseudo-Text.

Table 6: Results without access to the corresponding text under *Over-training* setting and *Real-world training* setting. We fine-tune MS-COCO on SDv1-4. Key results are highlighted as Tab. 1.

Method	Ove	r-training (I	Pseudo-Text)	Real-w	Ouerry		
	ASR	AUC	TPR@1%FPR	ASR	AUC	TPR@1%FPR	Query
Loss	73.80	81.01	9.71	56.08	58.47	1.60	1
PIA	61.40	65.75	1.20	53.44	54.38	1.52	2
M. C.	74.36	81.55	11.28	56.68	60.00	1.28	3
SecMI	82.04	88.97	40.80	60.48	64.04	3.28	12
PFAMI	91.56	95.16	68.16	58.12	59.77	2.64	20
CLiD_{th}	92.84	95.43	72.36	76.16	83.27	19.76	15
$\operatorname{CLiD}_{vec}$	93.26	96.59	<u>71.73</u>	77.76	84.48	<u>18.06</u>	15

Conclusion

- 1. Identifying *Conditional Overfitting*, i.e., T2I diffusion models overfit more to conditional distribution p(x, y) than to marginal distribution p(x)
- 2. Revealing the *hallucination success* of existing membership inference methods and providing a more reasonable evaluation setting
- 3. Proposing to conduct membership inference via Conditional Likelihood Discrepancy (CLiD). CLiD-MI significantly **outperforms baselines across various data distributions and scales**.

Limitation

Superiority of CLiD-MI over the baselines in the pretraining setting *is not as evident* compared to fine-tuning setting.

 \rightarrow We emphasize our experiments under pretraining setting (Tab. 3) reveal the hallucination success of existing works and *encourage future research to focus on this more challenging and practical scenario*.

Thanks!

shengfang.zhai@gmail.com