Multi-hypotheses Conditioned Point Cloud Diffusion for 3D Human Reconstruction from Occluded Images

Donghwan Kim

KAIST Computer Vision and Learning Lab (KCVL) KAIST

Tae-Kyun (T-K) Kim

predicts the *pixel-aligned* 3D shapes of humans *robustly* from occluded images.

Input image

Segmented images

3D reconstruction as point cloud

Motivation

3D human reconstruction from 2D images play a significant role in metaverse.

Social interaction (human-object, human-human) make it more challenging due to occlusions.

3D Human Reconstruction

Parametric body models (SMPL/SMPL-X)

well regularized with human body priors.

robust to occlusion.

lack geometric details like clothing and hair.

Implicit-function-based models

conditioned on SMPL estimation. predict the pixel-aligned 3D shapes of humans. sensitive to occlusion, cannot inpaint the invisible regions.

MHCDIFF: Multi-hypotheses Conditioned Point Cloud Diffusion

MHCDIFF: Multi-hypotheses Conditioned Point Cloud Diffusion

4.2 Local features from SMPL

signed distance and normal obtained from the closest surface of SMPL mesh independent of global pose.

generalize well in diverse SMPL estimation due to occlusion.

 $X_t^{SMPL} = [\gamma(d(X_t|S)), \mathbf{n}(X_t|S)]$

4.3 Multi-hypotheses condition

effectively captures the distribution of multiple plausible SMPL meshes. robust to the noise of each SMPL estimation due to the occlusion.

$$X_t^{SMPL} = [rac{1}{s} \sum_{i=1}^s \gamma(o(X_t|S_i)), \gamma(d(X_t|S_i)))$$

 $(S_{\overline{i}})), \mathbf{n}(X_t|S_{\overline{i}})]$

MHCDIFF: Multi-hypotheses Conditioned Point Cloud Diffusion

4.4 Conditioned point cloud diffusion model

capture the global consistent features and generate the invisible parts. correct the misaligned SMPL estimation during the denoising process.

$$\mathcal{F}_{ heta}(\cdot): \mathbb{R}^{(3+c+4L+3)N} {
ightarrow} \mathbb{R}^{3N}$$

Quantitative evaluation

MHCDIFF outperforms prior implicit-function-based methods and SMPL/SMPL-X estimation methods on occluded images, and shows comparable performance on full-body images.

Randomly masked CAPE

	Methods	Chamfer Distance (cm)	Point-to-Surface (cm)		Methods	single	occluded single	two natural-inter	two closely-inter	three
Α	PaMIR [106]	12.912	12.619	A	PaMIR [106]	0.690	2.349	5.154	3.752	4.714
	ICON [92]	2.896	2.789		ICON [92]	0.555	0.549	0.563	0.786	0.669
	ICON (PIXIE estimation)	3.329	3.212		SIFU [104]	0.644	3.335	4.796	3.503	3.264
	SIFU [104]	14.397	14.087		HiLo [96]	0.606	2.808	4.139	3.346	4.398
	HiLo [96]	13.711	13.405	В	PIXIE (SMPL-X) [15]	0.868	0.813	0.755	0.951	0.809
В	PIXIE (SMPL-X) [15]	2.705	2.662		ProPose (SMPL) [14]	0.675	0.567	0.574	0.766	0.688
	ProPose (SMPL) [14]	2.370	2.307	Ours	MHCDIFF	0.591	0.491	0.536	0.703	0.673
Ours	MHCDIFF	1.872	1.810	0 410		<u>,</u>				<u></u>

MultiHuman

Qualitative evaluation (CAPE)

Qualitative evaluation (MultiHuman)

Qualitative evaluation (Hi4D)

Qualitative evaluation (in-the-wild)

Qualitative evaluation (in-the-wild)

Input image

Segmented images

24

Ours

Conclusion

Contributions

Multi-hypotheses conditioning mechanism effectively captures the distribution of multiple plausible SMPL meshes.

Point cloud diffusion model captures the global consistent features and inpaints the invisible parts.

Limitations

Inference is slow due to iterative denoising procedures. Point cloud may not be directly usable in real-world applications.

Thank you!

Website: https://donghwankim0101.github.io/projects/mhcdiff Code: https://github.com/DonghwanKIM0101/MHCDIFF

Donghwan Kim

Tae-Kyun (T-K) Kim

