

Dec 10, 2024

Meta-Learning Universal Priors Using Non-Injective Change of Variables

Yilang Zhang

Dept. of ECE, University of Minnesota

Aknowledgement: Alireza Sadeghi, Georgios B. Giannakis

NSF grants 2220292, 2312547, 2212318, and 2126052

Motivating context of meta-learning

Challenge in deep learning: large-scale model vs. limited training data

Ex. ResNet-50 [He et al'15]

>23M parameters

HE-vs-MPM dataset [Han et al'23]

116 breast cancer images

Conventional supervised learning

 $\min_{oldsymbol{\phi}} \mathcal{L}(oldsymbol{\phi}; \mathcal{D}^{ ext{trn}}) + \mathcal{R}(oldsymbol{\phi})$

VS.

- \circ Model parameter $\phi \in \mathbb{R}^d$, training data $\mathcal{D}^{\mathrm{trn}} = \{(\mathbf{x}^n, y^n)\}_{n=1}^{N^{\mathrm{trn}}}$
- Loss $\mathcal{L}(\phi; \mathcal{D}^{trn}) = -\log p(\mathbf{y}^{trn} | \phi; \mathbf{X}^{trn})$, regularizer $\mathcal{R}(\phi) = -\log p(\phi)$ empirical prior
- Overfitting if $d \gg N^{\text{trn}}$ > Rely on informative $\mathcal{R}(\phi)$

Remedy: extract and transfer task-invariant prior from related tasks

learnable prior

- ✓ Goal: learn task-invariant prior from given tasks, with which new task can be solved
- > Bilevel problem: task-specific parameter $\phi_t \in \mathbb{R}^d$, task-invariant meta-parameter $\theta \in \mathbb{R}^D$

$$\begin{split} \min_{\boldsymbol{\theta}} \sum_{t=1}^{T} \mathcal{L}(\boldsymbol{\phi}_{t}^{*}(\boldsymbol{\theta}); \mathcal{D}_{t}^{\mathrm{val}}) & \text{outer/meta-level} \\ \text{s.t. } \boldsymbol{\phi}_{t}^{*}(\boldsymbol{\theta}) &= \operatorname*{arg\,\min}_{\boldsymbol{\phi}_{t}} \mathcal{L}(\boldsymbol{\phi}_{t}; \mathcal{D}_{t}^{\mathrm{trn}}) + \mathcal{R}(\boldsymbol{\phi}_{t}; \boldsymbol{\theta}), \ \forall t & \text{inner/task-level} \\ \boldsymbol{\phi}_{t}^{*}(\boldsymbol{\theta}) &= \operatorname*{arg\,\min}_{\boldsymbol{\phi}_{t}} \mathcal{L}(\boldsymbol{\phi}_{t}; \mathcal{D}_{t}^{\mathrm{trn}}, \boldsymbol{\theta}), \ \forall t & \text{alternative: implicit prior} \end{split}$$

S. Ravi, and H. Larochelle, "Optimization as a model for few-shot learning," ICLR, 2017.

Expressiveness challenge in prior selection

- Q. Which prior/regularizer to choose?
- Implicit prior via initialization
 - MAML [Finn et al'17]: Task-invariant initialization + GD

$$\boldsymbol{\phi}_t^0 = \boldsymbol{\phi}^{\text{init}} = \boldsymbol{\theta}, \ \forall t \qquad \boldsymbol{\phi}_t^k = \boldsymbol{\phi}_t^{k-1} - \alpha \nabla \mathcal{L}(\boldsymbol{\phi}_t^{k-1}; \mathcal{D}_t^{\text{trn}}), \ k = 1, \dots, K$$

Lemma [Grant et al'18]. Under second-order approximation, MAML satisfies $\phi_t^K(\theta) \approx \phi_t^*(\theta) = \arg\min_{\phi_t} \mathcal{L}(\phi_t; \mathcal{D}_t^{\mathrm{trn}}) + \frac{1}{2} \|\phi_t - \theta\|_{\Lambda_t}^2$ where Λ_t is determined by $\alpha, K, \nabla^2 \mathcal{L}(\theta; \mathcal{D}_t^{\mathrm{trn}})$

- > Implicit Gaussian prior $p(\phi_t; \theta) = \mathcal{N}(\theta, \Lambda_t^{-1})$
- Explicit prior via regularization
- Isotropic Gaussian [Rajeswaran et al'19] $\mathcal{R}(\phi_t; \theta) = \frac{\lambda}{2} \|\phi_t \phi^{\text{init}}\|_2^2, \ \theta := \{\phi^{\text{init}}, \lambda\}$
- o Diagonal Gaussian [Li et al'17], block-diagonal Gaussian [Park et al'19], ...
- Sparse [Tian et al'20], factorable + degenerate [Bertinetto et al'18, Lee et al'19], ...

Challenge: preselected priors have limited expressiveness

C. Finn, P. Abbeel, and S. Levine, "Model-agnostic meta-learning for fast adaptation of deep networks," *ICML*, 2017. E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths, "Recasting gradient-based meta-learning as hierarchical Bayes," *ICLR*, 2018.4 / 7

Data-driven priors via transform

Goal: data-driven prior $p(\phi_t; \theta)$ of sufficient expressiveness

Key idea: transform a known prior into the sought one

- Learning prior boils down to learning transform
- Conventional approaches:
 - o GAN, VAE, diffusion model: tailored to nature signals
 - Normalizing flow (NF)

Change-of-variable formula. Let $\mathbf{Z} \in \mathbb{R}^d$ be a continuous random vector, and $f : \mathbb{R}^d \mapsto \mathbb{R}^d$ a bijection. Then $\mathbf{Z}' := f(\mathbf{Z})$ has analytical pdf $p_{\mathbf{Z}'}(\mathbf{z}') = p_{\mathbf{Z}}(f^{-1}(\mathbf{z}')) \left| \det J_{f^{-1}}(\mathbf{z}') \right| = \frac{p_{\mathbf{Z}}(f^{-1}(\mathbf{z}'))}{\left| \det J_f(\mathbf{z}') \right|}$ (a.e.).

- Probability integral transform (PIT): if d=1, the optimal $f^* = Q^{-1} \circ P_Z$
- If d>1, f^* may not exist [Kong et al'20, Sec. 4] P_Z, Q : source, target cdfs
- Limited expressiveness especially in high-dimensional spaces

Learning universal prior via non-injective change-of-variables

Our approach: non-injective change-of-variable (NCoV)

Theorem 1 (Multivariate PIT). Let $\mathbf{Z} \in \mathbb{R}^d$ be a continuous random vector with mutually independent entries. For any differentiable a.e. cdf $Q : \mathbb{R}^d \mapsto [0, 1]$, there exists $f^* : \mathbb{R}^d \mapsto \mathbb{R}^d$ for which $\mathbf{Z}' := f^*(\mathbf{Z})$ has cdf $P_{\mathbf{Z}'} = Q$ (a.e.).

- Q is arbitrary (even discrete), and f^* can be non-injective
- Limitation: transformed pdf may be intractable

$$p_{\mathbf{Z}'}(\mathbf{z}') = \int_{\mathbb{R}^d} p_{\mathbf{Z}}(\mathbf{z}) \delta(\mathbf{z}' - f^*(\mathbf{z})) d\mathbf{z}$$

Alternative: numerical integration when d is small

Meta-learning with NCoVs

Target pdf q is $p(\phi_t; \theta)$; use parametric $f(\cdot; \theta)$; task-level optimizes latent variable z_t

Side benefit: inherent initialization $\mathbf{z}_t^0 = \arg \max_{\mathbf{z}_t} p_{\mathbf{z}}(\mathbf{z}_t)$ via maximum a priori

Numerical tests

Few-shot classification

Method	Prior model	5-class miniImageNet 1-shot (%) 5-shot (%)	
Meta-LSTM [41]	RNN-based	$43.44_{\pm 0.77}$	$60.60_{\pm 0.71}$
MAML [10]	implicit Gaussian	$48.70_{\pm 1.84}$	$63.11_{\pm 0.92}$
MetaSGD [29]	diagonal Gaussian	$50.47_{\pm 1.87}$	$64.03_{\pm 0.94}$
R2D2 [3]	degenerate body & Gaussian head	$51.8_{\pm 0.2}$	$68.4_{\pm 0.2}$
MC [37]	block-diagonal Gaussian	$54.08_{\pm 0.93}$	$67.99_{\pm 0.73}$
Warp-MAML [12]	Gaussian	$52.3_{\pm 0.8}$	$68.4_{\pm 0.6}$
MAML + L2F [2]	implicit Gaussian	$52.10_{\pm 0.50}$	$69.38_{\pm 0.46}$
MeTAL []]	implicit Gaussian	$52.63_{\pm 0.37}$	$70.52_{\pm 0.29}$
Minimax-MAML [58]	inverted Gaussian & entropy	$51.70_{\pm 0.42}$	$68.41_{\pm 1.28}$
MAML + MetaNCoV	NCoV based	${f 57.74}_{\pm 1.47}$	$70.72_{\pm 0.70}$
MetaSGD + MetaNCoV	Neo v-based	$59.10_{\pm 1.52}$	$71.48_{\pm 0.68}$

Cross-domain generalization

Mathod	5-class TieredImageNet		5-class CUB		5-class Cars	
	1-shot (%)	5-shot (%)	1-shot (%)	5-shot (%)	1-shot (%)	5-shot (%)
MAML [10]	$51.61_{\pm 0.20}$	$65.76_{\pm 0.27}$	$40.51_{\pm 0.08}$	$53.09_{\pm 0.16}$	$33.57_{\pm 0.14}$	$44.56_{\pm 0.21}$
ANIL [38]	$52.82_{\pm 0.29}$	$66.52_{\pm 0.28}$	$41.12_{\pm 0.15}$	$55.82_{\pm 0.21}$	$34.77_{\pm 0.31}$	46.55 ± 0.29
BOIL [35]	$53.23_{\pm 0.41}$	$69.37_{\pm 0.23}$	$44.20_{\pm 0.15}$	$60.92_{\pm 0.11}$	$36.12_{\pm 0.29}$	$50.64_{\pm 0.22}$
SparseMAML+ 56	$53.91_{\pm 0.67}$	$69.92_{\pm 0.21}$	$43.43_{\pm 1.04}$	$62.02_{\pm 0.78}$	$37.14_{\pm 0.77}$	$53.18_{\pm 0.44}$
GAP [19]	$58.56_{\pm 0.93}$	$72.82_{\pm 0.77}$	$44.74_{\pm 0.75}$	$64.88_{\pm 0.72}$	$38.44_{\pm 0.77}$	$55.04_{\pm 0.77}$
MetaNCoV	$61.50_{\pm 1.49}$	$73.10_{\pm 0.74}$	$47.84_{\pm 1.49}$	$65.27_{\pm 0.73}$	$41.66_{\pm 1.48}$	${\bf 57.19}_{\pm 0.75}$

Check our paper for additional analytical and experimental results

