

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing

Adarsh Jamadandi * ^{1,2}, Celia Rubio-Madrigal *², Rebekka Burkholz ²

¹ Universität des Saarlandes * Equal contribution

² CISPA Helmholtz Center for Information Security

- GNNs learn from graph-structured data
- Training GNNs → message passing on <u>input graph</u>

Image from: D. Grattarola, "Graph Deep Learning" (2021). https://danielegrattarola.github.io/files/talks/2021-03-01-USI_GDL_GNNs.pdf

Bottlenecks obstruct the flow of information during message passing

Spectral gap: $\lambda_1 - \lambda_0 \ (= \lambda_1)$ Normalized Laplacian: $L_G = I - D^{-1/2} A \ D^{-1/2}$

Small spectral gap \equiv bottlenecks

Do we need to balance over-squashing and over-smoothing?

Adding this extra road causes delays (Braess, 1968)

- Not all edge additions increase connectivity
- Not all edge deletions decrease connectivity

(Eldan et al., 2017) ⇒ there is a Braess Paradox for the **spectral gap** of the normalized Laplacian

We can

- 1. DELETE edges
- 2. INCREASE λ_1

(mitigating over-squashing)

Existence proof / Counterexample

- 1. The spectral gap increases (helping over-squashing)
- 2. The order of smoothing decreases (plot \rightarrow)
 - Also in real-world datasets (Texas plot \searrow)

Calculating the spectral gap is <u>costly</u>. Two suggestions:

- 1. Eldan's sufficient criterion for the Braess paradox.
- 2. Proxy given by Matrix Perturbation theory (O(1)!)

Lemma 2.1. Eldan et al. (2017): Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a finite graph, with f denoting the eigenvector and $\lambda_1(\mathcal{L}_{\mathcal{G}})$ the eigenvalue corresponding to the spectral gap. Let $\{u, v\} \notin \mathcal{V}$ be two vertices that are not connected by an edge. Denote $\hat{\mathcal{G}} = (\mathcal{V}, \hat{\mathcal{E}})$, the new graph obtained after adding an edge between $\{u, v\}$, i.e., $\hat{\mathcal{E}} := \mathcal{E} \cup \{u, v\}$. Denote with $\mathcal{P}_f := \langle f, \hat{f}_0 \rangle$ the projection of f onto the top eigenvector of $\hat{\mathcal{G}}$. Define $g(u, v, \mathcal{L}_{\mathcal{G}}) :=$

$$\begin{split} -\mathcal{P}_{f}^{2}\lambda_{1}(\mathcal{L}_{\mathcal{G}})-2(1-\lambda_{1}(\mathcal{L}_{\mathcal{G}}))\left(\frac{\sqrt{d_{u}+1}-\sqrt{d_{u}}}{\sqrt{d_{u}+1}}f_{u}^{2}\right.\\ &\left.+\frac{\sqrt{d_{v}+1}-\sqrt{d_{v}}}{\sqrt{d_{v}+1}}f_{v}^{2}\right)+\frac{2f_{u}f_{v}}{\sqrt{d_{u}+1}\sqrt{d_{v}+1}}.\\ If \,g\,(u,v,\mathcal{L}_{\mathcal{G}})>0, \, then\,\lambda_{1}(\mathcal{L}_{\mathcal{G}})>\lambda_{1}(\mathcal{L}_{\hat{\mathcal{G}}}). \end{split}$$

$$\dot{\lambda} \approx \lambda + \Delta w_{u,v} ((f_u - f_v)^2 - \lambda (f_u^2 + f_v^2)),$$

Quality of approximation and runtime

Approximation compared to full calculation (black dots):

Seconds compared to other literature:

Method	Cora	Citeseer	Chameleon	Squirrel
FoSR	4.69	5.33	5.04	19.48
SDRF	19.63	173.92	17.93	155.95
ProxyAdd	4.30	3.13	1.15	9.12
PROXYDELETE	1.18	0.86	1.46	7.26

Benchmarks for over-squashing and over-smoothing •

PascalVOC-SP (Test F1 ↑)	Peptides-Func (Test AP ↑)	Peptides-Struct (Test MAE ↓)
0.1268±0.0060	0.5930±0.0023	0.3496±0.0013
0.1848±0.0107	0.6996±0.0076	0.2781±0.0028
0.2157±0.0057	0.6526±0.0014	0.2499±0.0006
0.2213±0.0011	0.6789 ± 0.0002	0.2465±0.0004
0.2170±0.0015	0.6908±0.0007	0.2470±0.0080
	PascalVOC-SP (Test F1 ↑) 0.1268±0.0060 0.1848±0.0107 0.2157±0.0057 0.2213±0.0011 0.2170±0.0015	PascalVOC-SP (Test F1↑) Peptides-Func (Test AP↑) 0.1268±0.0060 0.5930±0.0023 0.1848±0.0107 0.6996±0.0076 0.2157±0.0057 0.6526±0.0014 0.2213±0.0011 0.6789±0.0002 0.2170±0.0015 0.6908±0.0007

Table 1: Results on Long Range Graph Benchmark datasets.

 Table 3: Node classification on Amazon-Ratings.
 Table 4: Node classification on Minesweeper.

						·					
Method	#EdgesAdded	Accuracy	#EdgesDeleted	Accuracy	Layers	Method	#EdgesAdded	Accuracy	#EdgesDeleted	Test ROC	Layers
GCN	-	47.20±0.33	-	47.20±0.33	10	GCN	-	88.57± 0.64	-	88.57±0.64	10
GCN+FoSR	25	49.68±0.73	-	-	10	GCN+FoSR	50	90.15±0.55	-	-	10
GCN+Eldan	25	48.71±0.99	100	50.15±0.50	10	GCN+Eldan	100	90.11±0.50	50	89.49±0.60	10
GCN+ProxyGap	10	49.72±0.41	50	49.75±0.46	10	GCN+ProxyGap	20	89.59±0.50	20	89.57±0.49	10
GAT	-	47.43±0.44	-	47.43±0.44	10	GAT	-	93.60±0.64	-	93.60±0.64	10
GAT+FoSR	25	51.36±0.62	-	-	10	GAT+FoSR	100	93.14±0.43	-	-	10
GAT+Eldan	25	51.68±0.60	50	51.80±0.27	10	GAT+Eldan	50	93.26±0.48	100	93.82±0.56	10
GAT+ProxyGap	20	49.06±0.92	100	51.72±0.30	10	GAT+ProxyGap	20	93.60±0.69	20	93.65±0.84	10
GCN	-	47.32±0.59	-	47.32±0.59	20	GCN	-	87.41±0.65	-	87.41±0.65	20
GCN+FoSR	100	49.57±0.39	-	-	20	GCN+FoSR	100	89.64±0.55	-	-	20
GCN+Eldan	50	49.66±0.31	20	48.32±0.76	20	GCN+Eldan	72	89.70±0.57	10	88.90±0.44	20
GCN+ProxyGap	50	49.48±0.59	500	49.58±0.59	20	GCN+ProxyGap	20	89.46±0.50	50	89.35±0.30	20
GAT	-	47.31±0.46	-	47.31±0.46	20	GAT	-	93.92±0.52	-	93.92±0.52	20
GAT+FoSR	100	51.31±0.44	-	-	20	GAT+FoSR	50	93.56±0.64	-	-	20
GAT+Eldan	20	51.40±0.36	20	51.64±0.44	20	GAT+Eldan	10	93.92±0.44	20	95.48±0.64	20
GAT+ProxyGap	50	47.53±0.90	20	51.69±0.46	20	GAT+ProxyGap	20	94.89±0.67	20	94.64±0.81	20

- Connecting fields with different objectives
- Deleting edges fights both challenges, explaining success of GLT

Table 3: Pruning for lottery tickets comparing UGS to our ELDANDELETE pruning and our PROXY-DELETE pruning. We report Graph Sparsity (GS), Weight Sparsity (WS), and Accuracy (Acc).

Method	Cora			Citeseer		Pubmed			
Metrics	GS	WS	Acc	GS	WS	Acc	GS	WS	Acc
UGS	79.85%	97.86%	68.46±1.89	78.10%	97.50%	66.50±0.60	68.67%	94.52%	76.90±1.83
ELDANDELETE-UGS	79.70%	97.31%	68.73±0.01	77.84%	96.78%	64.60±0.00	70.11%	93.17%	78.00±0.42
PROXYDELETE-UGS	78.81%	97.24%	69.26±0.63	77.50%	95.83%	65.43±0.60	78.81%	97.24%	75.25±0.25

- Over-squashing and Over-smoothing not a trade-off. Can be mitigated simultaneously.
- We leverage Braess paradox to show deleting edges can also help alleviate over-squashing and slow down the rate of detrimental over-smoothing.
- We propose a computationally friendly spectral gap optimization scheme to rewire graphs.
- Additonally, as a bonus application we show our proposal can help identify graph lottery tickets!

