FM-Delta: Lossless Compression for Storing **Massive Fine-tuned Foundation Models**

Wanyi Ning¹, Jingyu Wang¹, Qi Qi¹, Mengde Zhu¹, Haifeng Sun¹, Daixuan Cheng¹, Jianxin Liao¹, Ce Zhang² ¹Beijing University of Posts and Telecommunications ²University of Chicago

Beijing University of Posts and Telecommunications

Motivation: Storage Overhead in Cloud

Model	Model	Full	PEFT	Inact	
WIGUCI	size	num.	num.	mact.	
Falcon-40B	40B	79	48	82%	
GPT-NeoX	20B	51	22	84%	
GPT-J	6B	284	75	88%	
LLaMA-7B	7B	5112	1170	91%	
Bert-large	336M	260	159	88%	
Stable Diff.	860M	1606 65		64%	
Approx. disk storage		159TB	4TB	89%	

heavy storage overhead for cloud providers such as HuggingFace.

> premise --- protect users' intellectual property of users (i.e., **no changes to models**)

\$9,540

Finding: Small Delta

Empirical analysis: a small difference (delta) between most fine-tuned and pre-trained models stored in cloud.

• High model cosine similarity

• Small element difference 10⁻⁴-10⁰

(b) Bert-large-uncased

Average difference grows slow over finetuning.

Finding: Small Delta

 \succ Theoretical analysis: delta grows slowly as the number of fine-tuning steps T increases.

 $\mathbb{E}_{\xi \sim \mathcal{D}} \|G(\mathbf{w}; \xi) - \nabla f(\mathbf{w})\|^2 \leq \sigma^2.$

Theorem 1 (Growth Rate for Model Difference.). Let w_p and w_f are the parameters of the pretrained and fine-tuned models, respectively. The fine-tuning stage involves T training steps. With learning rate $\eta_t = \frac{1}{\beta\sqrt{t}}$, t = 1, 2, ..., T, the distance between \mathbf{w}_p and \mathbf{w}_f is

 $\mathbb{E} || \mathbf{w}_f$

where $\|\cdot\|$ is l_2 -norm; f is the β -smooth convex loss function on the fine-tuning dataset; w^{*} is the optimal model parameter on the fine-tuning task; C_1 and C_2 are the constants related to the pre-trained model, which are $C_1 = \left(\frac{9\sigma^2}{4\beta^2} + \frac{f(\mathbf{w}_p) - f(\mathbf{w}^*)}{2\beta}\right)^{\frac{1}{2}}$ and $C_2 = \left(\frac{\sigma^2}{\beta^2} + \frac{2(f(\mathbf{w}_p) - f(\mathbf{w}^*))}{\beta}\right)^{\frac{1}{2}}$

Assumption 1. For the loss function f, there exists $\mathbf{w}^* \in \mathbb{R}^d$ such that $f(\mathbf{w}) \ge f(\mathbf{w}^*)$, for all \mathbf{w} . Assumption 2. f satisfies that for all $\mathbf{w}, \mathbf{v} \in \mathbb{R}^d$, $f(\mathbf{w}) - f(\mathbf{v}) \leq (\mathbf{w} - \mathbf{v})^T \nabla f(\mathbf{v}) + \frac{\beta}{2} ||\mathbf{w} - \mathbf{v}||^2$.

Assumption 3. Given a data distribution \mathcal{D} , the variance of stochastic gradient is bounded:

$$|-\mathbf{w}_p||] \le \frac{\sqrt{3}\sigma}{\beta} + C_1(\ln T)^{\frac{1}{2}} + C_2T^{\frac{1}{4}}.$$

(2)

Probability wodeling			Update syr			
	<-1, n>		<-1, 1>	<0, 0>		
Step 0						
Step i						

Delta:

Step 1. Mapping Float into Integer for 0.0316 $w_{\mathbf{f}}$ 0.0309 $w_{\mathbf{p}}$ > map floating-points into *unsigned integers*, 0.0007 $-w_{\mathbf{p}}$ $W_{\mathbf{f}}$ and performs *integer subtraction*.

byte number	1234
$int(w_p)$	3d 01 6f 00
$int(w_f)$	3c fd 21 ff
$int(w_f - w_p)$	3a 37 80 34
$int(w_f) - int(w_p)$	00 04 4d 01

Method: FM-Delta

- **Step 2. Compression with Range Coding:**

- original float fine-tuned model

 \succ Symbolization: <sign s, most significant bit k> of int delta as symbols. > Probability Model: a quasi-static probability modeler to termly update symbol frequencies. \succ Encoding: the symbols with the raw bits on all delta elements through range scaling. \succ Decoding: map the encoded value back to the original symbol range --> reverse-mapping delta -->

Results: Compression Rate

Family Pretrained Size	Pretrained	Pretrained Finetuned O Size Num. Stor	Original	Storage after Compression (GB)					
	Size		Storage (GB)	LZMA	Gzip	Zlib	FPZip	BZip2	FM-Delta
Falcon-40B	40B	5	461.6	349.3	373.4	373.4	456.9	342.7	270.8 (59%)
(fp16)		10	846.3	621.7	669.9	669.9	837.8	608.5	473.9 (56%)
GPT-NeoX	20B	5	230.8	162.9	177.2	176.4	213.4	158.6	112.4 (49%)
(fp16)		10	423.2	298.7	324.9	323.4	391.2	290.7	205.2 (48%)
GPT-J	6B	5	68.4	57.2	60.6	60.6	61.2	58.7	44.6 (65%)
(fp16)		10	125.3	104.8	111	111	112.2	107.6	73.8 (59%)
GPT-2	124M	50 100	24.2 48	21.8 43.2	22 43.5	22 43.5	21.9 43.4	22.5 44.5	15 (62%) 28.7 (60%)
Bert-large-	336M	50	63.7	58.6	59.1	59.1	58.9	60.4	41.3 (65%)
uncased		100	126.1	116.1	117.1	117.1	116.6	119.6	82.1 (65%)
Stable-Diffusion	860M	5	19.2	17.7	17.8	17.8	17.8	18.3	12.8 (67%)
UNet		10	35.2	32.5	32.7	32.7	32.6	33.5	23.5 (67%)
ResNet50	26M	10 20	1.1 2	0.9 1.7	0.9 1.7	0.9 1.7	0.9 1.7	0.9 1.8	0.7 (68%) 1.3 (66%)
Avg. Compression Throughput (MB/s)			4.9	36.1	35.6	83.5	12.1	109.7	
Avg. Decompression Throughput (MB/s)			24.8	236.6	260.8	80.6	23.8	100.9	

Results: Cloud Cost Analysis

Is the cost of decompressing models lower than storing them uncompressed in the cloud?

regard model download as a binomial distribution

 $P(X=k) = C_n^k \cdot$

k represents the number of concurrent download requests in a given minute.

100% storage vs. 50% storage + server purchase fee \longrightarrow 40% cost reduction

$$\left(\frac{10}{30 \times 24 \times 60}\right)^k \cdot \left(1 - \frac{10}{30 \times 24 \times 60}\right)^k$$

Goal: maximize loadable models *n*, s.t. $\sum_{k=t}^{n} P(X = k) \le 0.01$

Thank you!

Feel free to contact me: ningwanyi@bupt.edu.cn

