Data subsampling for Poisson regression with *p*th-root-link

Han Cheng Lie (University of Potsdam), <u>Alexander Munteanu</u> (TU Dortmund) December 10-15, 2024 | NeurIPS, Vancouver, BC, Canada $\begin{aligned} p\text{th-root-link Poisson regression problem:} \\ \text{given } X \in \mathbb{R}^{n \times d} \text{ with row vectors } x_i &= (1, x_i^{(1)}, \dots, x_i^{(d-1)}), Y \in \mathbb{N}_0^n, p \in \{1, 2\}, \\ \text{find} \quad \beta^* \in \operatorname{argmin}_{\beta \in \mathsf{D}(\mathsf{o})} \sum_{i=1}^n (x_i\beta)^p - py \log(x_i\beta) + \log(y!), \\ \text{where } D(\eta) &:= \{\beta \mid \forall i \in [n] \colon x_i\beta > \eta\}. \end{aligned}$

Link functions: canonical log-link intractable in our setting [Molina et al., 2018], so consider popular alternatives [Cochran, 1940]:

- ID-link (p = 1)
- square-root-link (p = 2)

Our Goal: reduce instance size *n* by subsampling. Preserve a $(1 + \varepsilon)$ -approximation. Hereby save computational resources such as

- data storage
- runtime
- energy
- etc.

Data Subsampling

Sensitivity sampling framework: [Langberg, Schulman, 2010]

- sample proportional to sensitivity scores (relative contribution of single data points)
- main complexity parameters: VC dimension Δ , total sensitivity \mathfrak{S}
- sample size $m \in \tilde{O}(\Delta \mathfrak{S} / \varepsilon^2)$ yields (1 $\pm \varepsilon$)-approximation

VC dimension bounds:

- $O(d^2)$ (complexity of evaluating the loss [Anthony, Bartlett, 2002])
- O(d log(n) log(y_{max})/ε) ⊆ Õ(d/ε) (grouping and rounding technique [Munteanu et al., 2018, 2022])

Bounding the sensitivity: pth-root-link requires to handle three intervals:

- 1. large $x_i\beta \ge y_i^{1/p}$ (relate to the ℓ_p -norm $(x_i\beta)^p$)
- 2. medium $\eta < x_i\beta < y_i^{1/p}$ (uniform sampling \checkmark)
- 3. small O < $x_i \beta \leq \eta$ (domain shift)

Handling large $x\beta \ge y^{1/p}$

Bounds on the (individual) loss $g_y(x\beta)$:

•
$$(x\beta)^p \geq g_y(x\beta) \geq \frac{(x\beta-y^{1/p})^p}{\lambda}$$

- + λ = 1 for p = 2 \checkmark
- but $\lambda \in \Theta\left(\sqrt{\frac{y}{\log(y)}}\right)$ required for p = 1

Novel complexity parameter ρ :

+ ρ -complexity quantifies balance between upper and lower bound:

$$\sup_{\beta \in \mathbb{R}^d} \frac{\sum_{j=1}^n |\mathbf{X}_j\beta|^p}{\sum_{j=1}^n |\mathbf{X}_j\beta - \mathbf{y}_j^{1/p}|^p} \le \rho$$

• natural interpretation w.r.t. the Poisson model and optimization

Bounding the total sensitivity for all $x_i\beta > \eta$:

$$\mathfrak{S} \in \begin{cases} O\left(\rho d\sqrt{y_{\max}/\log(y_{\max})} + \log\log(1/\eta)\right), & \text{ for } p = 1\\ O\left(\rho d + \log\left(y_{\max}\right) + \log\log(1/\eta)\right), & \text{ for } p = 2. \end{cases}$$

Handling large $x\beta \ge y^{1/p}$

Bounds on the (individual) loss $g_y(x\beta)$:

•
$$(x\beta)^p \ge g_y(x\beta) \ge \frac{(x\beta-y^{1/p})^p}{\lambda}$$

- $\lambda = 1$ for $p = 2 \checkmark$
- but $\lambda \in \Theta\left(\sqrt{\frac{y}{\log(y)}}\right)$ required for p = 1

Novel complexity parameter ρ :

+ $\rho\text{-complexity}$ quantifies balance between upper and lower bound:

$$\sup_{\beta \in \mathbb{R}^d} \frac{\sum_{j=1}^n |\mathbf{X}_j\beta|^p}{\sum_{j=1}^n |\mathbf{X}_j\beta - \mathbf{y}_j^{1/p}|^p} \le \rho$$

• natural interpretation w.r.t. the Poisson model and optimization

Bounding the total sensitivity for all $x_i\beta > \eta$:

$$\mathfrak{S} \in \begin{cases} O\left(\rho d \sqrt{y_{\max}/\log(y_{\max})} + \log\log(1/\eta)\right), & \text{for } p = 1\\ O\left(\rho d + \log\left(y_{\max}\right) + \log\log(1/\eta)\right), & \text{for } p = 2. \end{cases}$$

Domain shift:

- Problem: cannot bound the sensitivity for contributions close to zero due to asymptote
- domain shift avoids this issue by optimizing over $\beta \in D(\eta) \subseteq D(0)$
- all $\beta \in D(\eta)$ satisfy $\forall i \in [n] : x_i \beta > \eta$

Optimization over $D(\eta)$:

- there exists a $(1 + \varepsilon)$ -approximate solution in $D(\varepsilon)$
- sensitivity sampling preserves the loss up to another (1 + arepsilon) factor
- \Rightarrow we can find $ilde{eta}\in {\it D}(arepsilon)$ evaluated on the subsample that satisfies

 $f(X\tilde{\beta}) \leq (1 + \varepsilon) f(X\beta^*)$, where $\beta^* \in \operatorname{argmin}_{\beta \in D(o)} f(X\beta)$.

Optimization requires the extreme points ${\mathcal E}$ on the convex hull:

- Worst case $|\mathcal{E}| = n$
- Smoothed complexity: $\mathbb{E}\left[|\mathcal{E}|\right] \in O\left(\frac{\log^{1.5d-1}(n)}{\sigma^d} + \log^{d-1}(n)\right)$ [Damerow, 2006]
- ε -kernel approximation: $O(\frac{1}{\varepsilon}^{(d-1)/2})$ [Chan, 2004, Blum, Har-Peled, Raichel, 2019]

Limitations

General lower bounds:

- $\Omega(n)$ against (weighted) subsets of data
- Information theoretic $\Omega(n/\log(n))$ against any data reduction

Dependence on parameters:

- For $p = 1: \lambda \in \Theta\left(\sqrt{y_{\max}/\log(y_{\max})}\right)$ via novel bounds on the Lambert W_0 function improving over [Roig-Solvas, Sznaier, 2022]
- linear dependence on ρ and λ but $d^{\rm 2}$ from VC dimension \times sensitivity
- $\tilde{\Theta}(d)$ likely to suffice [Munteanu, Omlor, 2024]

Domain shift and the choice of *p*:

- Domain shift fails to preserve $(1 + \varepsilon)$ -approximation for $p \ge 3$
- · Indicates that other techniques needed, if even possible