
Dual Defense: Enhancing Privacy and Mitigating Poisoning Attacks 

in Federated Learning

Federated learning (FL) 

encounters significant challenges 

related to privacy and poisoning 

attacks. Secure aggregation 

enhances data privacy but 

complicates anomaly detection, as 

most methods require unencrypted 

model updates. Current solutions 

often depend on impractical non-

colluding two-server setups or 

three-party computations, limiting 

scalability. To address these 

issues, we introduce the Dual 

Defense Federated Learning 

(DDFed) framework, which 

improves privacy and mitigates 

poisoning attacks without 

changing FL topology or adding 

new roles. 

Contributions
We introduce a dual defense 

strategy that enhances privacy and 

combats poisoning attacks by 

integrating FHE-based secure 

aggregation with a similarity-based 

detection mechanism for malicious 

encrypted models.

A novel two-phase anomaly 

detection mechanism is proposed, 

featuring safeguards against 

privacy breaches from Byzantine 

clients, along with a clipping 

technique to strengthen defenses 

against diverse poisoning attacks.

Comprehensive experiments 

across multiple poisoning scenarios 

validate DDFed's effectiveness in 

protecting model privacy and 

defending against threats.

Figure 2: Comparison of defense effectiveness across various defense approaches, 

evaluated on MNIST (top) and FMNIST(bottom), under IPM attack (left), ALIE attack (middle), and SCALING attack (right).
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Experiments

FHE-based Secure Aggregation

DDFed necessitates that all clients pre-process their inputs for normalization 

and shifts the task of comparing similarity scores to the client side. This is 

because clients possess the FHE private key, allowing them to obtain the 

similarity score in plaintext: 
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FHE-based Secure Aggregation

To mitigate this privacy risk, DDFed improves secure inner-product 

computation by introducing perturbations 𝜀, 𝛿 − differential privacy with a 

Gaussian mechanism ) into each normalized and encrypted model update. 

Figure 4 Comparison of effectiveness across different attack ratios, evaluated on MNIST (top) and 

FMNIST (bottom), under IPM attack (left), ALIE attack (middle), and SCALING attack(right).

Figure 5 Comparison of effectiveness across different client numbers, evaluated on MNIST (top) 

and FMNIST (bottom), under IPM attack (left), ALIE attack (middle), and SCALING attack (right).

Under the IPM attack scenario, DDFed method achieves the best comprehensive

defense performance.The same conclusion also holds true in the ALIE attack.

And DDFed is resilient to poisoning attacks from the beginning of training. Our

design is not constrained by the attack’s initiation round.

Table 1: Time cost per training round of various defense approaches.

Figure 5. Impact of hyper-parameter ϵ of differential privacy based

perturbation at secure similarity computation phase, evaluated on

MNIST (left) and FMNIST (right), under IPM attack.

DDFed generally requires an extra 2 seconds compared 

to the usual 10-second training round, resulting in a 20% 

increase in time per training round. However, our 

DDFed is capable of defending against model poisoning 

attacks while also offering strong privacy guarantees.
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