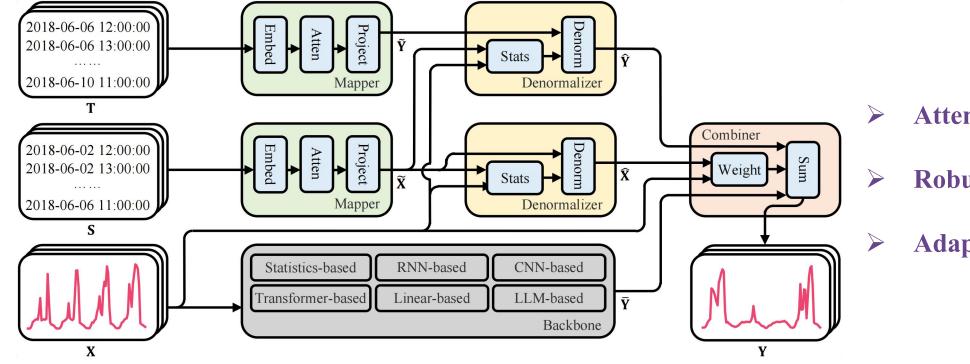

Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective

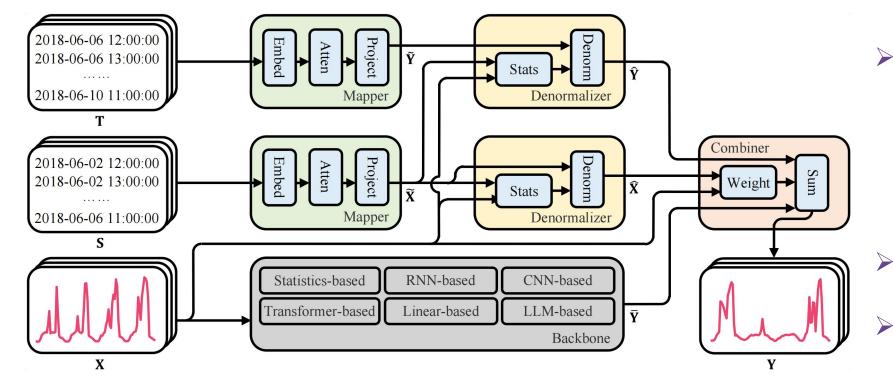
Chengsen Wang Qi Qi Jingyu Wang Haifeng Sun Zirui Zhuang Jinming Wu Jianxin Liao

State Key Laboratory of Networking and Switching Technology Beijing University of Posts and Telecommunications, Beijing, China

Motivation



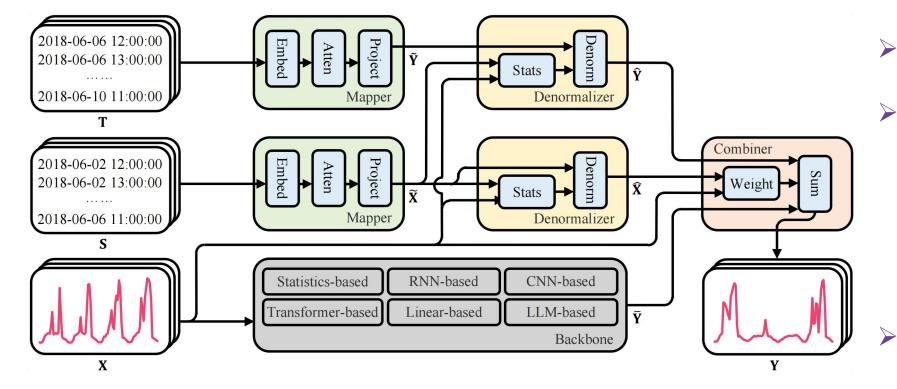
- > Despite the enormous advancements of previous research, most methods focus mainly on local data.
- > When real-world data is polluted, the lack of global information weakens the robustness of predictions.



- **Attention-based Mapper**
- > Robust Denormalizer
- **Adaptive Combiner**

Methodology

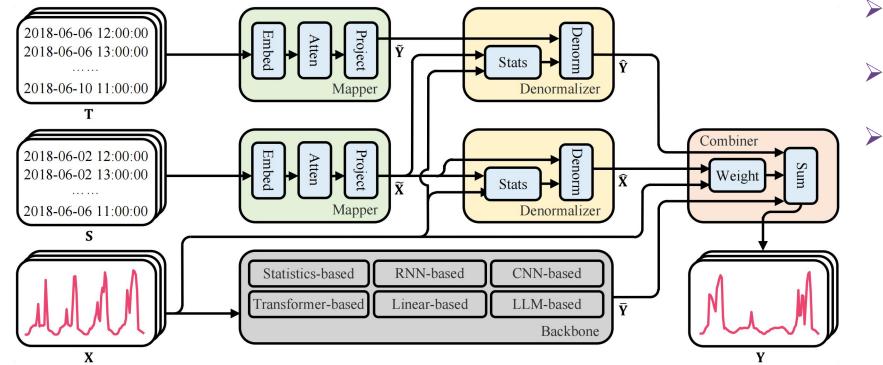
Attention-based Mapper


Captures the timestamp dependencies via attention, creating standard-distribution initial history and future mappings.

Robust Denormalizer

Adaptive Combiner

Methodology



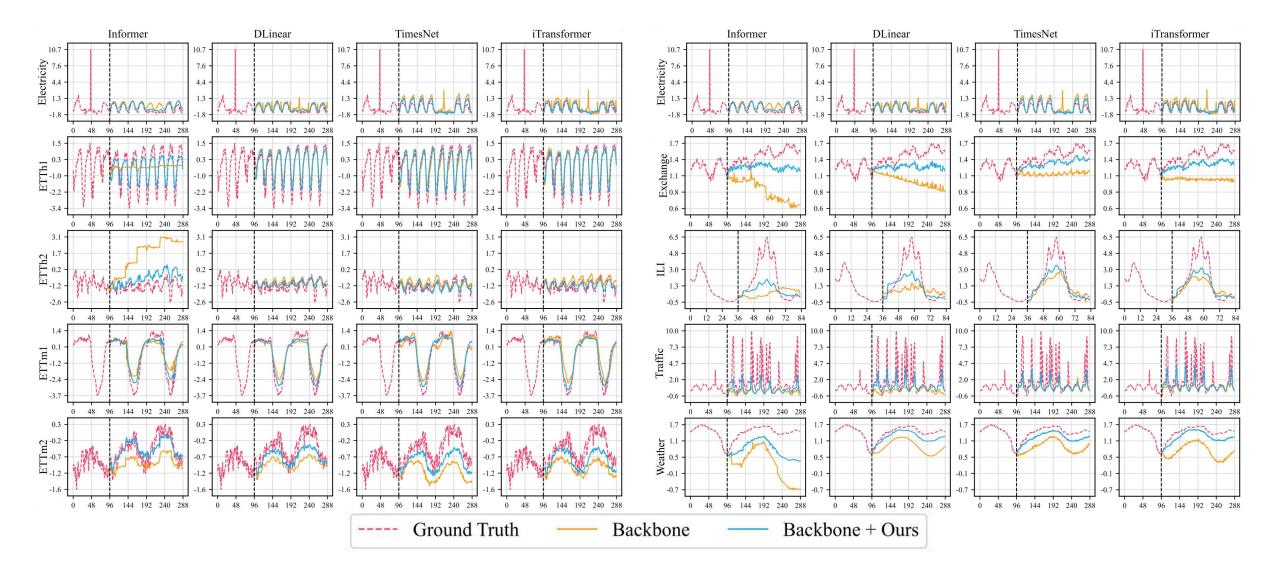
- Attention-based Mapper
 - Robust Denormalizer
 Inverse normalizes the initial mappings using quantile deviation from historical observations, mitigating data drift.
 - **Adaptive Combiner**

Methodology

- Attention-based Mapper
- Robust Denormalizer
 - Adaptive Combiner Adjusts weights of global mapping and local prediction based on the differences between final mapping and historical observations, yielding final prediction.

Experiment

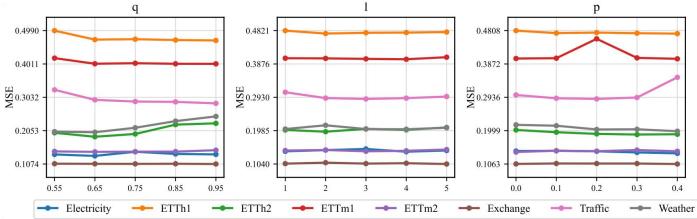
Method		Informer MSE MAE		+ Ours MSE MAE		DLinear MSE MAE		+ Ours MSE MAE		TimesNet MSE MAE		+ Ours MSE MAE		iTransformer MSE MAE		+ Ours MSE MAE		Impr.
Electricity	96 192 336 720	0.333 0.362 0.352 0.364	0.414 0.444 0.434 0.443	0.217 0.220 0.230 0.247	0.323 0.329 0.337 0.351	0.196 0.196 0.208 0.239	0.283 0.286 0.301 0.331	0.147 0.172 0.197 0.239	0.238 0.253 0.274 0.308	0.175 0.191 0.211 0.235	0.280 0.293 0.310 0.326	0.154 0.169 0.185 0.226	0.248 0.261 0.276 0.303	0.153 0.167 0.183 0.220	0.246 0.259 0.276 0.310	0.120 0.143 0.168 0.217	0.198 0.216 0.240 0.279	15.7%
ETTh1	96 192 336 720	0.926 1.235 1.354 1.264	0.736 0.844 0.875 0.857	0.609 0.831 0.882 0.937	0.569 0.680 0.698 0.730	0.409 0.457 0.500 0.610	$\begin{array}{c} 0.440 \\ 0.475 \\ 0.506 \\ 0.576 \end{array}$	0.391 0.446 0.492 0.609	0.418 0.457 0.488 0.556	0.453 0.533 0.621 0.844	0.481 0.531 0.580 0.697	0.435 0.520 0.596 0.773	0.464 0.517 0.560 0.661	0.420 0.494 0.538 0.716	0.454 0.502 0.528 0.629	0.411 0.474 0.534 0.704	0.441 0.482 0.519 0.615	8.8%
ETTh2	96 192 336 720	0.708 1.133 0.997 1.607	0.549 0.688 0.667 0.815	0.422 0.860 0.747 1.255	0.443 0.599 0.570 0.720	0.159 0.187 0.207 0.262	0.278 0.309 0.330 0.378	0.128 0.165 0.206 0.214	0.205 0.238 0.265 0.288	0.183 0.218 0.240 0.281	0.298 0.329 0.346 0.376	0.174 0.204 0.219 0.278	0.276 0.306 0.319 0.363	0.177 0.199 0.220 0.271	0.287 0.311 0.329 0.366	0.172 0.196 0.213 0.270	0.271 0.295 0.306 0.356	12.1%
ETTm1	96 192 336 720	0.593 0.611 0.888 1.037	0.548 0.576 0.726 0.786	0.503 0.534 0.707 0.925	0.486 0.525 0.628 0.719	0.339 0.394 0.450 0.508	0.388 0.418 0.451 0.493	0.309 0.362 0.442 0.493	0.353 0.386 0.432 0.467	0.449 0.448 0.550 0.619	0.448 0.461 0.504 0.559	0.381 0.440 0.494 0.563	0.398 0.432 0.462 0.507	0.383 0.429 0.485 0.566	0.415 0.445 0.479 0.532	0.349 0.403 0.468 0.564	0.386 0.420 0.460 0.519	8.1%
ETTm2	96 192 336 720	0.186 0.242 0.454 0.861	0.311 0.348 0.466 0.616	0.147 0.230 0.308 0.719	0.266 0.341 0.380 0.561	0.115 0.143 0.176 0.225	0.232 0.261 0.294 0.340	0.080 0.109 0.148 0.221	0.165 0.193 0.229 0.274	0.121 0.155 0.190 0.242	0.234 0.267 0.293 0.334	0.110 0.136 0.175 0.225	0.212 0.239 0.269 0.309	0.120 0.149 0.185 0.233	0.235 0.266 0.293 0.333	0.111 0.144 0.182 0.232	0.221 0.252 0.283 0.327	12.1%
Exchange	96 192 336 720	0.735 1.016 1.331 2.054	0.728 0.861 0.971 1.263	0.223 0.421 0.691 1.152	0.391 0.547 0.694 0.922	0.051 0.099 0.174 0.314	0.164 0.238 0.317 0.446	0.046 0.093 0.161 0.308	0.155 0.225 0.299 0.439	0.076 0.135 0.237 0.636	0.198 0.272 0.363 0.618	0.066 0.115 0.219 0.595	0.177 0.242 0.336 0.582	0.058 0.113 0.210 0.517	0.172 0.245 0.339 0.551	0.051 0.108 0.196 0.510	0.158 0.231 0.314 0.529	16.4%
ILI	24 36 48 60	3.374 3.094 3.383 3.610	1.356 1.293 1.370 1.415	2.487 2.617 2.879 3.086	1.106 1.157 1.230 1.274	2.087 2.065 2.059 2.186	1.131 1.107 1.088 1.097	1.875 1.756 1.639 1.644	0.963 0.957 0.912 0.889	1.478 1.294 1.280 1.291	0.713 0.748 0.736 0.773	1.333 1.204 1.278 1.191	0.684 0.695 0.721 0.713	1.148 1.061 1.209 1.222	0.659 0.695 0.735 0.758	1.129 1.039 1.164 1.196	0.658 0.682 0.715 0.731	9.9%
Traffic	96 192 336 720	0.467 0.455 0.462 0.495	0.375 0.371 0.378 0.400	0.352 0.343 0.335 0.340	0.297 0.288 0.281 0.287	0.482 0.449 0.453 0.475	0.378 0.356 0.358 0.374	0.301 0.302 0.306 0.327	0.260 0.261 0.263 0.278	0.360 0.364 0.373 0.396	0.314 0.314 0.320 0.337	0.322 0.325 0.331 0.339	0.278 0.277 0.282 0.289	0.308 0.327 0.338 0.357	0.272 0.279 0.285 0.302	0.283 0.291 0.301 0.320	0.249 0.253 0.259 0.273	19.5%
Weather	96 192 336 720	1.422 1.429 1.796 1.542	0.867 0.880 1.008 0.946	0.642 0.877 1.506 1.427	0.554 0.664 0.851 0.853	0.198 0.237 0.282 0.343	0.258 0.296 0.333 0.379	0.176 0.219 0.265 0.330	0.244 0.280 0.312 0.360	0.188 0.234 0.293 0.368	0.238 0.278 0.317 0.365	0.171 0.233 0.288 0.364	0.226 0.277 0.314 0.362	0.178 0.231 0.289 0.370	0.223 0.268 0.310 0.363	0.159 0.214 0.273 0.352	0.220 0.265 0.306 0.355	9.6%
I	npr.	23.8%			13.1%			7.5%			5.5%			12.5%				



Extensive experiments conducted on nine real-world datasets demonstrate that **GLAFF** significantly enhances the average performance of widely used mainstream forecasting models by **12.5%**, surpassing the previous state-

of-the-art method by **5.5%**.

Experiment


Experiment

Ablation Studies

Μ	lethod	iTransformer MSE MAE		+ Ours MSE MAE		w/o Backbone MSE MAE		w/o Attention MSE MAE		w/o Quantile MSE MAE		w/o Adaptive MSE MAE	
Electricity	96	0.1525	0.2460	0.1197	0.1979	0.2058	0.2663	0.1518	0.2450	0.1467	0.2465	0.1574	0.2502
	192	0.1674	0.2593	0.1434	0.2157	0.2097	0.2793	0.1684	0.2610	0.1677	0.2662	0.1740	0.2662
	336	0.1830	0.2762	0.1683	0.2395	0.2454	0.3014	0.1832	0.2775	0.1993	0.2954	0.1953	0.2877
	720	0.2199	0.3097	0.2169	0.2786	0.2984	0.3386	0.2182	0.3092	0.2593	0.3403	0.2330	0.3171
Traffic	96	0.3084	0.2717	0.2828	0.2485	0.3348	0.2723	0.3172	0.2806	0.2909	0.2684	0.2930	0.2612
	192	0.3267	0.2794	0.2909	0.2528	0.3387	0.2736	0.3357	0.2884	0.2948	0.2737	0.2970	0.2610
	336	0.3381	0.2850	0.3005	0.2594	0.3460	0.2794	0.3482	0.2958	0.3023	0.2804	0.3082	0.2706
	720	0.3574	0.3015	0.3201	0.2730	0.3558	0.2906	0.3684	0.3113	0.3249	0.2984	0.3212	0.2819
Weather	96	0.1784	0.2229	0.1587	0.2199	0.2382	0.2695	0.1780	0.2214	0.1811	0.2270	0.1914	0.2379
	192	0.2308	0.2675	0.2138	0.2654	0.2882	0.3105	0.2383	0.2733	0.2364	0.2768	0.2489	0.2832
	336	0.2892	0.3099	0.2733	0.3058	0.3381	0.3414	0.2932	0.3146	0.2905	0.3134	0.3070	0.3251
	720	0.3701	0.3634	0.3520	0.3547	0.4011	0.3813	0.3752	0.3664	0.3727	0.3649	0.3829	0.3722
	Avg.	0.2602	0.2827	0.2367	0.2593	0.3000	0.3004	0.2646	0.2870	0.2555	0.2876	0.2591	0.2845

Hyperparameter Analyses

Thanks for you listening!

For further questions welcome to discuss via E-mail

cswang@bupt.edu.cn

or GitHub issues

https://github.com/ForestsKing/GLAFF