

Kun FANG, Qinghua TAO, Kexin LV, Mingzhen HE, Xiaolin HUANG, Jie YANG

> The Thirty-Eighth Annual Conference on Neural Information Processing Systems

> > 2024.11

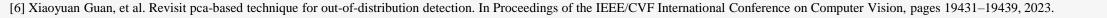
E

水思源•爱

- •Out-of-distribution detection^[1]
 - In-Distribution (InD): data following the training distribution of neural networks
 - Out-of-Distribution (OoD): data NOT from the training distribution
 - A bi-classification task: scoring function $S(\cdot)$, threshold s
 - Evaluation metrics: FPR with a 95% TPR, AUROC

$$D(\boldsymbol{x}) = \begin{cases} \text{InD}, & S(\boldsymbol{x}) > s, \\ \text{OoD}, & S(\boldsymbol{x}) < s. \end{cases}$$

- Related work
 - Base on logits ^[2], features ^[3], gradients ^[4]
 - Post hoc. v.s. training regularization ^[5]
- [1] Yang, Jingkang, et al. "Generalized out-of-distribution detection: A survey." International Journal of Computer Vision (2024): 1-28.
- [2] Weitang Liu, et al. Energy-based out-of-distribution detection. Advances in neural information processing systems, 33:21464–21475, 2020.
- [3] Yiyou Sun, et al. Out-of-distribution detection with deep nearest neighbors. In International Conference on Machine Learning, pages 20827–20840. PMLR, 2022.
- [4] Rui Huang, et al. On the importance of gradients for detecting distributional shifts in the wild. Advances in Neural Information Processing Systems, 34:677-689, 2021
- [5] Hsu, et al. Generalized odin: Detecting out-of-distribution image without learning from out-of-distribution data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10951–10960, 2020.



Background

- PCA for Out-of-Distribution Detection
- PCA learns a subspace characterizing InD information from the training data (InD)

Projecting new data \hat{x} into the subspace and re-projecting back, we can obtain the **reconstruction error** $e(\hat{x}) = ||U_q U_q^T (\hat{z} - \mu) - (\hat{z} - \mu)||_2$

- An ideal case: InD data with a small $e(\hat{x})$; OoD data with a large $e(\hat{x})$.
- Existing works^[6]:
 - Empirically verifying that PCA is insufficient in separating OoD and InD.
 - No further explorations on the reasons behind. A simple combination with other scores.

Motivation

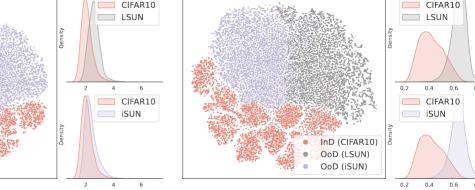
Considering that PCA is linear, we propose

- The **non-linearity** in InD and OoD data hinders PCA from learning a suitable subspace.
- Kernel PCA^[7] is introduced to leverage the nonlinear kernel to learn a subspace where the disparity between InD and OoD gets pronounced.

CIFAR10 iSUN D (CIFAR10)

(a) T-SNE of z and PCA reconstruction errors.

(b) T-SNE of $\Phi(z)$ and KPCA reconstruction errors.


Challenges we face:

- How to find **appropriate kernels**?
- How to leverage KPCA in **large-scale data**? (Storage and computation of the kernel matrix)

Solutions we propose:

- <u>A kernel perspective</u> on the KNN method^[8]
- Explicit feature mappings to approximate kernels, avoiding computations on the kernel matrix

[7] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component analysis. In International conference on artificial neural networks, pages 583–588. Springer, 1997 [8] Yiyou Sun, et al. Out-of-distribution detection with deep nearest neighbors. In International Conference on Machine Learning, pages 20827–20840. PMLR, 2022.

Non-linear kernel design

Cosine kernel

Methodology

Normalize the imbalanced feature norms

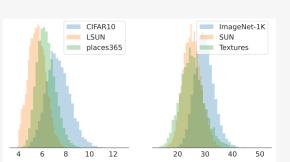
• $k_{\cos}(z_1, z_2) = \frac{z_1^T z_2}{||z_1||_2 \cdot ||z_2||_2} = \phi_{\cos}^T(z_1)\phi_{\cos}(z_2)$

4 6 8 10 12 Cosine-Gaussian kernel

- l_2 distance on l_2 -normalized features benefits OoD detection^[8]
- A Gaussian kernel preserves the l₂ distance $k_{\text{gau}}(\mathbf{z_1}, \mathbf{z_2}) = e^{-\gamma ||\mathbf{z_1} - \mathbf{z_2}||_2^2}$

Explicit feature mappings of kernels

Cosine kernel


 l_2 normalization

- $\Phi(\cdot) \triangleq \phi_{cos}(\cdot)$
- Computation complexity O(1)
- **Cosine-Gaussian kernel** <u>*l*</u>₂ normalization + *l*₂ distance
 - Random Fourier Features^[9] to approximate k_{gau}
 - $\Phi(\cdot) \triangleq \phi_{\text{RFF}}(\phi_{\cos}(\cdot))$
 - Computation complexity $\mathcal{O}(M), N_{tr} \gg M$

 $\phi_{\mathrm{RFF}}(\mathbf{z}) \triangleq \sqrt{\frac{2}{M}} [\phi_1(\mathbf{z}), \dots, \phi_M(\mathbf{z})]$ $\phi_i(\mathbf{z}) = \cos(\mathbf{z}^T \boldsymbol{\omega}_i + u_i), j = 1, ..., M$

[8] Yiyou Sun, et al. Out-of-distribution detection with deep nearest neighbors. In International Conference on Machine Learning, pages 20827–20840. PMLR, 2022 [9] li Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in neural information processing systems, 20, 2007.

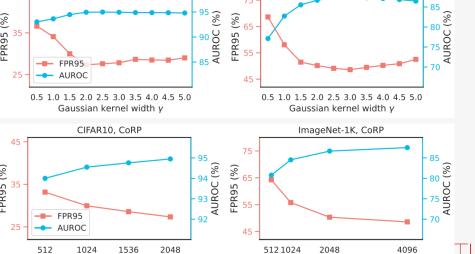
Kernel PCA for Out-of-Distribution Detection

Experiments – OoD detection

- Comparisons with the KNN method^[8]
 - Better performance, cheaper complexity
- Comparisons with regularized PCA^[6]
 - Better performance, indicating superior non-linearity

	OoD data sets									AVERAGE		
method		turalist		SUN		laces		extures				
	FPR↓	AUROC↑	FPR↓	AUROC↑	FPR↓	AUROC↑	FPR↓	AUROC↑	FPR↓	AUROC↑		
MSP	54.99	87.74	70.83	80.86	73.99	79.76	68.00	79.61	66.95	81.99		
+ PCA [8]	51.47	88.95	67.64	82.71	71.20	80.87	60.53	85.86	62.71	84.60		
+ CoP	50.84	89.21	67.35	82.81	70.96	81.08	59.96	86.21	62.28	84.83		
+ CoRP	43.70	91.70	61.79	85.43	66.67	83.07	45.67	91.86	54.46	88.02		
Energy	55.72	89.95	59.26	85.89	64.92	82.86	53.72	85.99	58.41	86.17		
+ PCA [8]	50.36	91.09	54.19	87.55	64.13	84.00	29.33	92.59	49.50	88.81		
+ CoP	45.13	92.15	52.33	88.01	61.49	84.96	29.13	92.57	47.02	89.42		
+ CoRP	26.85	95.15	40.38	90.76	51.26	87.35	12.11	97.17	32.65	92.61		
ReAct	20.38	96.22	24.20	94.20	33.85	91.58	47.30	89.80	31.43	92.95		
+ PCA [8]	10.17	97.97	18.50	95.80	27.31	93.39	18.67	95.95	18.66	95.76		
+ CoP	13.30	97.44	19.80	95.37	29.92	92.64	15.90	96.51	19.73	95.49		
+ CoRP	10.77	97.85	18.70	95.75	28.69	93.13	12.57	97.21	17.68	95.98		
BATS	42.26	92.75	44.70	90.22	55.85	86.48	33.24	93.33	44.01	90.69		
+ PCA [8]	29.66	94.49	38.11	90.03	51.70	87.25	13.46	97.09	33.23	92.56		
+ CoP	27.14	94.87	34.36	91.96	47.68	87.87	11.97	97.33	30.29	93.01		
+ CoRP	18.74	96.31	28.02	93.49	41.41	89.78	9.45	97.79	24.41	94.34		
ODIN	47.66	89.66	60.15	84.59	67.89	81.78	50.23	85.62	56.48	85.41		
Mahalanobis	97.00	52.65	98.50	42.41	98.40	41.79	55.80	85.01	87.43	55.47		
ViM	68.86	87.13	79.62	81.67	83.81	77.80	14.95	96.74	61.81	85.83		
DICE	26.66	94.49	36.08	90.98	47.63	87.73	32.46	90.46	35.71	90.92		
DICE+ReAct	20.08	96.11	26.50	93.83	38.34	90.61	29.36	92.65	28.57	93.30		
NNGuide	25.73	95.12	37.18	91.21	46.97	88.67	27.70	92.30	34.39	91.82		

				OoD d	ata sets					
method	iNa	turalist	5	SUN	Р	laces	Те	extures	AVERAGE	
	FPR↓ AUROC		FPR↓	AUROC↑	FPR↓	AUROC↑	FPR↓	FPR↓ AUROC↑		AUROC↑
Standard Training										
MSP ^[54]	54.99	87.74	70.83	80.86	73.99	79.76	68.00	79.61	66.95	81.99
ODIN ^[6]	47.66	89.66	60.15	84.59	67.89	81.78	50.23	85.62	56.48	85.41
Energy ^[67]	55.72	89.95	59.26	85.89	64.92	82.86	53.72	85.99	58.41	86.17
GODIN	61.91	85.40	60.83	85.60	63.70	83.81	77.85	73.27	66.07	82.02
Mahalanobis ^[45]	97.00	52.65	98.50	42.41	98.40	41.79	55.80	85.01	87.43	55.47
KNN ^[7]	59.00	86.47	68.82	80.72	76.28	75.76	11.77	97.07	53.97	85.01
CoP (ours)	67.25	83.41	75.53	79.93	82.48	73.83	8.33	98.29	58.40	83.86
CoRP (ours)	50.07	89.32	62.56	83.74	72.76	78.91	9.02	98.14	48.60	87.53
Supervised Contrastive Learning										
MSP ^[54]	64.96	86.23	53.55	87.20	57.80	85.54	73.99	74.14	62.57	83.28
ODIN ^[55]	65.08	86.28	53.79	87.21	58.04	85.56	74.22	74.15	62.78	83.30
Energy ^[67]	48.13	91.28	49.57	88.54	54.40	86.90	70.66	75.83	55.69	85.64
SSD ^[172]	57.16	87.77	78.23	73.10	81.19	70.97	36.37	88.52	63.24	80.09
KNN ^[77]	30.18	94.89	48.99	88.63	59.15	84.71	15.55	95.40	38.47	90.91
CoP (ours)	29.85	94.79	44.99	90.62	56.77	86.19	10.28	97.35	35.47	92.24
CoRP (ours)	23.61	95.86	41.07	91.25	53.52	87.27	10.23	97.04	32.11	92.86


method	time and memory complexity	time consuming (ms, per sample)	storage
KNN	$O(N_{ m tr})$	≈ 15.59	$\approx 20 \text{ GiB}$
CoP	O (1)	≈ 0.035	$\approx 22 \text{ MiB}$
CoRP	O(M)	≈ 0.086	$\approx 29 \text{ MiB}$

Experiments										90 (%) 70	- 95 - 85 % %	i5 -	- 85		
 Ablation studies: effect of more kernels Cosine、Gaussian、Laplacian、Polynomial Cosine-Laplacian、Cosine-Polynomial 											50 25 26 20 30 10	FPR95 AUROC 0.5 0.6 0.7 0.8 0.9 1.0 explained variance ratio CIFAR10, CoRP	0 0 0.90 0.92 0.94 0.96 0.98 1.00 explained variance ratio ImageNet-1K, CoRP	- 75 - 70)	
• Gau	ty ana ained ssian nber c	vari kern	iance nel w	e rat	io	nvolv	ved	hype	r-p	arame	eters	45 (%) 35 35 25	95 (%) S684 90 CO NOR 90 CO NOR 85 CH 100 CH	0.3 0.4 0.5 0.6 0.7 0.8 explained variance ratio	- 88 - 84 - 80
												45 · (%) 35 ·	CIFAR10, CORP	ImageNet-1K, CoRP	- 85
kernel	iNatural FPR↓ AU		SU FPR↓ A	OoD da IN AUROC↑		laces AUROC↑		xtures AUROC↑		ERAGE AUROC↑		4 25 -	AUROC 20.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0	5 - 5 - 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0	- 7 - 70
PCA (no kernels)	95.46 52	2.01	97.98	44.86	97.99	45.19	46.22	87.77	84.41	57.46			Gaussian kernel width γ	Gaussian kernel width γ	
Polynomial Laplacian Gaussian Cosine (CoP) Cosine-Polynomial	94.65 50 94.46 50 67.25 83	0.25 0.83 3.41	98.26 94.68 95.17 75.53 75.97	42.84 50.29 50.33 79.93 75.04	97.85 95.28 94.80 82.48 82.82	45.02 49.80 50.46 73.83 69.01	95.50 94.66 95.09 8.33 59.15	47.96 50.34 50.80 98.29 83.27	96.91 94.82 94.88 58.40 68.01	47.22 50.17 50.60 83.86 77.95		45 - (%) 355 -	CIFAR10, CORP	ImageNet-1K, CoRP	- 85 - 80 - 75 - 76
Cosine-Laplacian Cosine-Gaussian (CoRP)			77.54 62.56	76.70 83.74	84.47 72.76	70.16 78.91	11.97 9.02	97.57 98.14	62.54 48.60	80.60 87.53		25 -	AUROC 92 512 1024 1536 2048 dimension <i>M</i> of RFFs	5 - 512 1024 2048 4096 dimension <i>M</i> of RFFs	

Kernel PCA for Out-of-Distribution Detection CIFAR10, CoP

15 - FPR95 - AUROC	- 95 (%) - 90 OC (%) - 90 DOS (%) - 85 H H H H H H H H H H H H H H H H H H	
0.5 0.6 0.7 0.8 0.9 1.0 explained variance ratio	0	0.3 0.4 0.5 0.6 0.7 explained variance ratio
CIFAR10, CoRP		ImageNet-1K, CoRP
5 -		

上海交通大學

90

88

AUROC (%)

- 80

UNIVERSITY

ImageNet-1K, CoP

70 **T**

Conclusion

- KPCA learns a subspace where the disparity between InD and OoD is pronounced.
- **Effective kernels** under the OoD detection task
 - Cosine kernel
 - Cosine-Gaussian kernel
- Resolving the challenge of KPCA in large-scale data
 - Explicit feature mappings
 - Significantly reduced time and memory complexity. $(\mathcal{O}(N_{tr}) \rightarrow \mathcal{O}(M), N_{tr} \gg M)$

