

SHMT: Self-supervised Hierarchical Makeup Transfer via Latent Diffusion Models

Zhaoyang Sun^{1,3}Shengwu Xiong^{1,2,5}Yaxiong Chen¹Fei Du^{3,4}Weihua Chen^{3,4}Fan Wang^{3,4}Yi Rong^{1,2}

¹School of Computer Science and Artificial Intelligence, Wuhan University of Technology
²Sanya Science and Education Innovation Park, Wuhan University of Technology
³DAMO Academy, Alibaba Group
⁴Hupan Laboratory
⁵Shanghai AI Laboratory

Work done during internship of Zhaoyang Sun at DAMO Academy, Alibaba Group Corresponding author: Yi Rong (<u>yrong@whut.edu.cn</u>)

The goal of makeup transfer

Given a pair of source and reference face images, the main goal of makeup transfer is to generate an image that simultaneously satisfies the following conditions:

(1) Containing the makeup styles transferred from the reference image, such as lipstick, eye shadow and powder blush

(2) Preserving the content details of the source image, including identity, facial structure and background.

(3) High quality and realistic synthesis results

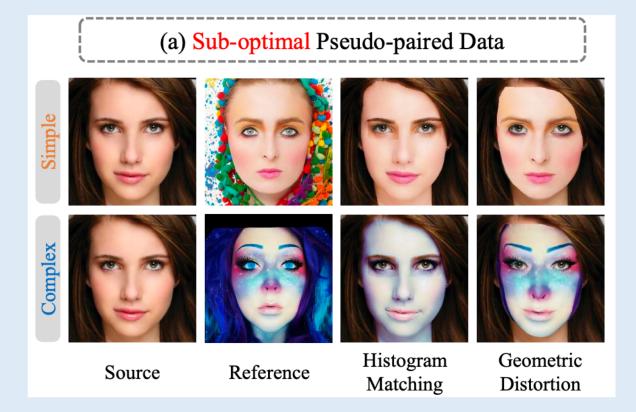
Source

Reference

Challenge1: unsupervised task

Makeup transfer is essentially an unsupervised task, which means that there are no real transferred images that can be used as labeled targets for model training.

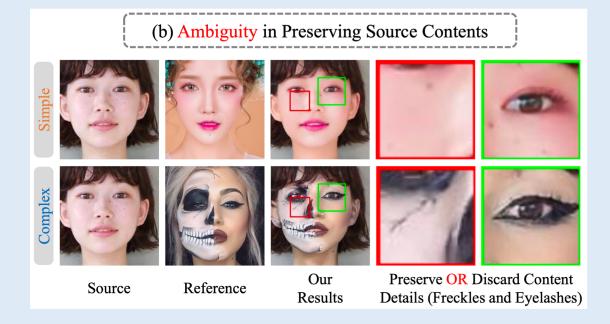
To address this issue, previous methods typically synthesize a "pseudo" ground truth from each input source-reference image pair, as an alternative supervision. Consequently, these **sub-optimal pseudo-paired data** will inevitably misguide the model training.



Challenge2: the diversity of makeup styles

The diversity of different makeup styles can also lead to **ambiguity in preserving source contents.**

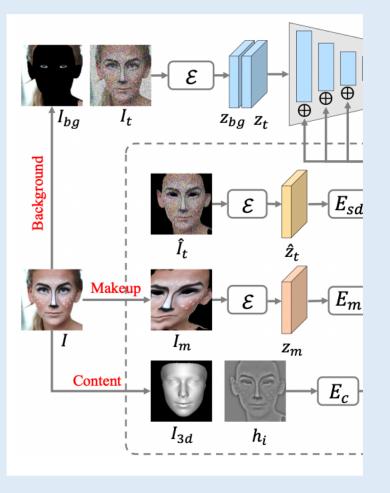
In practice, makeup styles can range from natural, barely-there looks to elaborate and dramatic ones, each having a different impact on the person face



(1) A self-supervised manner.

Following a "decoupling-and-reconstruction" paradigm, we craft a self-supervised strategy for makeup transfer.

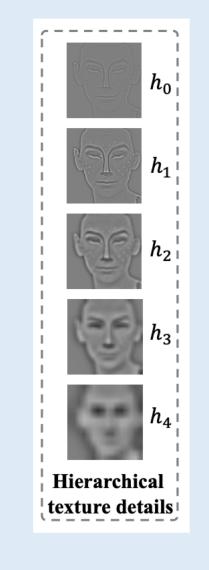
The **main idea** is to separate content and makeup representations from a facial image, and then reconstruct the original image from these components.



(2) Hierarchical texture details.

When injecting a **fine texture** detail, our model only needs to distill the low-frequency makeup information from the makeup representation to reconstruct the image. This **is suitable for simple makeup styles**.

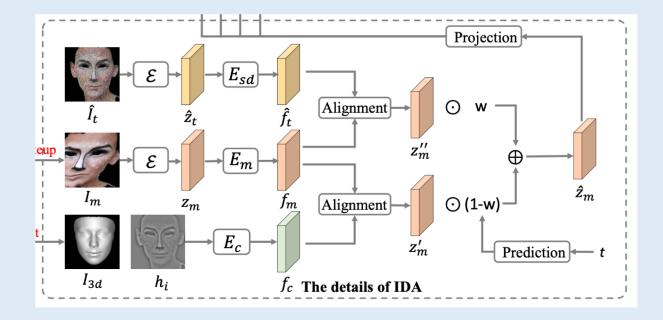
When injecting a **coarse texture** detail, our model must also distill the high-frequency makeup information from the makeup representation to ensure the recovery of the image. This **is suitable for complex makeup styles**.

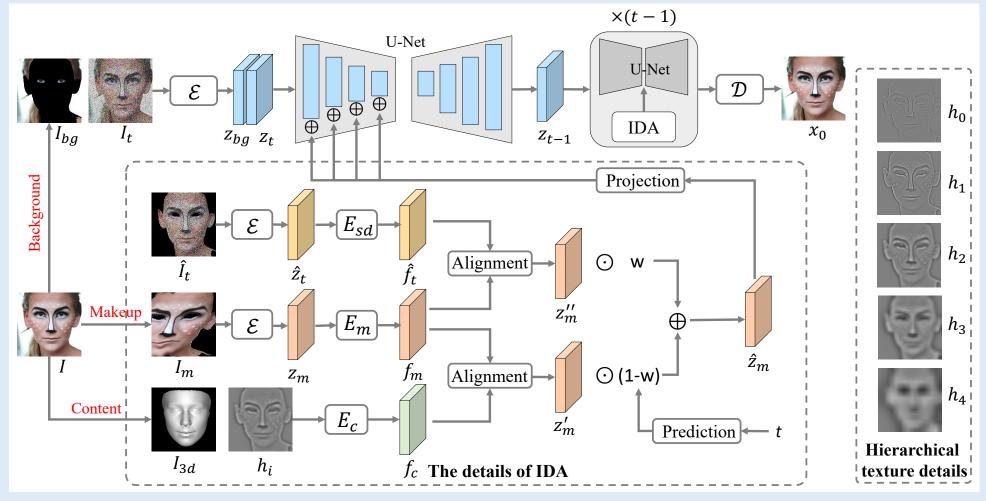


(3) Iterative Dual Alignment.

Due to the domain gap between content and makeup representations, we find that alignment errors occur frequently.

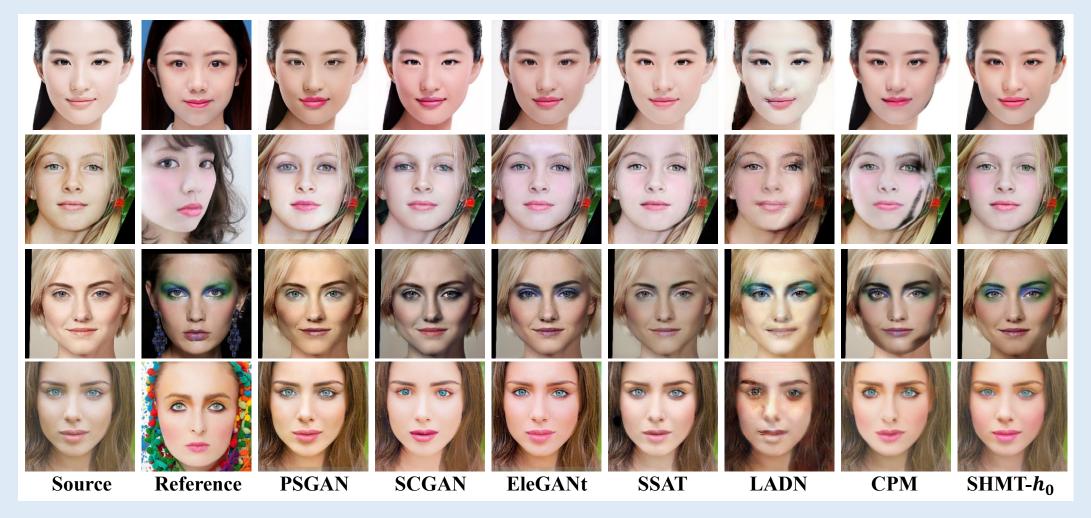
Considering the property that **noisy intermediate result is gradually moving closer to the real image domain** (e.g., the makeup representation domain), we propose a Iterative Dual Alignment (IDA) module to address the above issue.



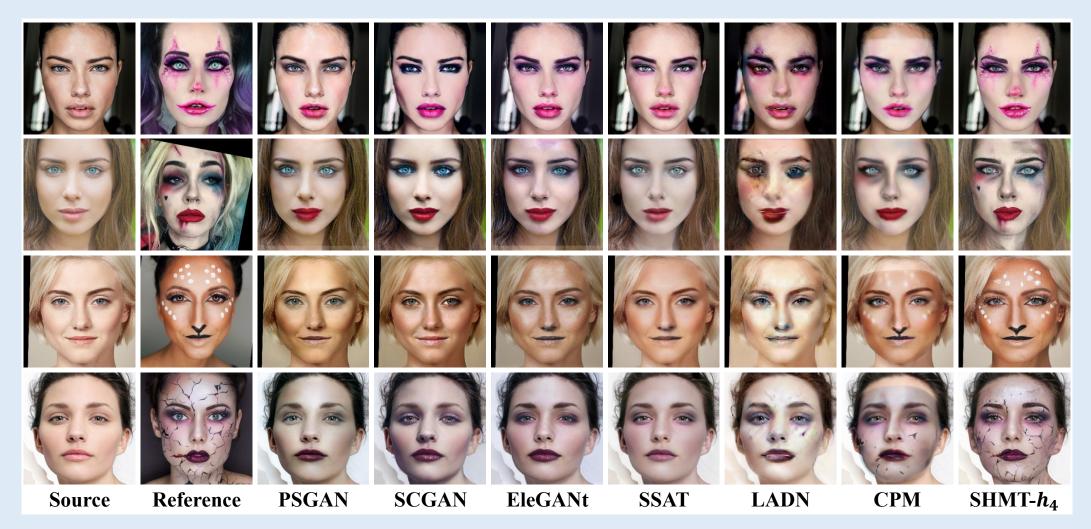


The overall framework of SHMT

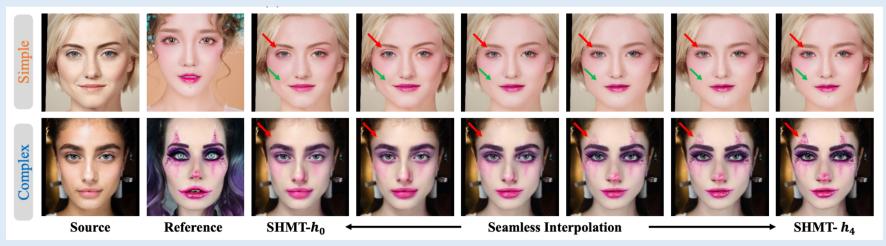
Simple makeup styles (using fine texture detail)



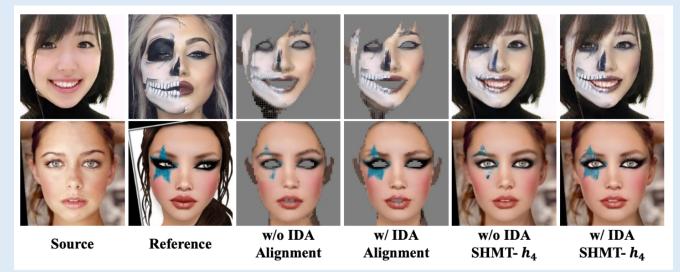
Complex makeup styles (using coarse texture detail)



The effectiveness of hierarchical texture details



The effectiveness of IDA



DAMO ACADE

The robustness and generalization ability of SHMT

(a) The robustness of the model

Elderly

Male

Pose

NEURAL INFORMATION PROCESSING SYSTEMS

Methods	MT			Wild-MT			LADN		
	FID	CLS	Key-sim	FID	CLS	Key-sim	FID	CLS	Key-sim
PSGAN [17]	45.02	0.628	0.975	89.92	0.642	0.969	57.80	0.684	0.975
SCGAN [7]	39.20	0.636	0.965	79.54	0.660	0.976	51.39	0.685	0.973
EleGANt [47]	54.06	0.634	0.973	86.19	0.651	0.961	61.40	0.693	0.969
SSAT [36]	38.01	0.645	0.975	70.53	0.667	0.973	53.84	0.692	0.976
LADN [11]	73.91	0.620	0.917	104.91	0.634	0.914	65.87	0.688	0.930
CPM [29]	42.76	0.652	0.951	95.61	0.661	0.924	40.57	0.729	0.954
Stable-Makeup [52]	33.26	0.682	0.973	64.64	0.711	0.968	37.33	0.767	0.965
SHMT- h_0	32.24	0.658	0.976	51.54	0.668	0.976	38.97	0.711	0.978
$\mathbf{SHMT} \cdot h_4$	24.93	0.715	0.953	45.02	0.719	0.954	27.01	0.786	0.958

Our code: https://github.com/Snowfallingplum/SHMT

13

Thank you for watching