

QuanTA: Efficient High-Rank Fine-Tuning of LLMs with **Quan**tum-Informed **T**ensor **A**daptation

Zhuo Chen¹², Rumen Dangovski¹³, Charlotte Loh¹³, Owen Dugan¹², Di Luo^{124*}, Marin Soljacic¹²

¹The NSF AI Institute for Artificial Intelligence and Fundamental Interactions 2Department of Physics, Massachusetts Institute of Technology 3Department of EECS, Massachusetts Institute of Technology 4Department of Physics, Harvard University

Workflow with Training LLMs

Full fine-tuning:

- **Pro**
	- o Most flexible
	- o High score
- **Con**
	- o High cost
	- o Prone to overfitting
	- o Catastrophic forgetting

LORA: LOW-RANK ADAPTATION OF LARGE LAN-**GUAGE MODELS**

Yelong Shen* Phillip Wallis Edward Hu* Zeyuan Allen-Zhu Yuanzhi Li **Shean Wang Weizhu Chen** Lu Wang

LoRA Is Not Always Sufficient

- LoRA works well for tasks with low intrinsic rank
- LoRA may struggle for tasks with high intrinsic rank

How to achieve parameter efficient high-rank fine-tuning?

Quantum-informed **T**ensor **A**daptation

Efficient high-rank finetuning

Easy to Implement

No inference overhead!

Theoretical Guarantees

Theorem 6.1 (Universality of QuanTA). Let W be an arbitrary matrix of shape $2^M \times 2^M$. For any collection of local dimensions $\{d_n\}$ such that each d_n is a power of 2 and $\prod_n d_n = 2^M$, it is always possible to decompose W into a finite sequence of tensors $\{T^{(\alpha)}\}$, where each tensor applies on two axes with local dimensions $d_{m}(\alpha)$ and $d_{n}(\alpha)$.

Theorem 6.2 (Rank representation). Let $R = r(\mathcal{T})$ be the rank of the full QuanTA operator, $R^{(\alpha)} = r(T^{(\alpha)})$ be the rank of individual tensors, d be the total dimension of T, $d^{(\alpha)} = d_{m^{(\alpha)}} d_{n^{(\alpha)}}$ be the total dimension of the individual tensor $T^{(\alpha)}$, and N_T be the total number of tensors. The following inequality always holds

$$
\sum_{\alpha} \frac{dR^{(\alpha)}}{d^{(\alpha)}} - d(N_T - 1) \le R \le \min_{\alpha} \frac{dR^{(\alpha)}}{d^{(\alpha)}}.
$$

Theorem 6.3 (Composition openness). There exists a set $\mathbb{S} = \{M_k\}$ of matrices generated from a fixed QuanTA structure and two matrices $\mathcal{M}_1, \mathcal{M}_2 \in \mathbb{S}$ such that $\mathcal{M}_1 \mathcal{M}_2 \notin \mathbb{S}$.

Benchmark on DROP Dataset

Benchmark on Commonsense Reasoning

Benchmark on Arithmetic Reasoning

Conclusion and Outlooks

Conclusion:

- QuanTA is an efficient, easy-to-implement, high-rank fine-tuning method with no inference overhead
- QuanTA leverages quantum-inspired techniques to achieve high-rank adaptations
- QuanTA is guaranteed by universality theorem and rank representation theorem
- QuanTA demonstrates better performance with extremely few parameters on various tasks **Outlook:**
- Apply QuanTA in other domains such as image or video generation
- Integrate QuanTA with other fine-tuning methods such as quantization
- Explore additional optimization techniques tailored specifically for QuanTA
- Design new fine-tuning methods based on principles from quantum computing