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Workflow with Training LLMs
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Full fine-tuning:
• Pro

o Most flexible
o High score

• Con
o High cost
o Prone to overfitting
o Catastrophic forgetting



LoRA Is Not Always Sufficient
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• LoRA works well for tasks with low intrinsic rank
• LoRA may struggle for tasks with high intrinsic rank

How to achieve parameter efficient high-rank fine-tuning?



Quantum-informed Tensor Adaptation
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Efficient high-rank finetuning



Easy to Implement
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No inference overhead!



Theoretical Guarantees
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Benchmark on DROP Dataset
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Benchmark on Commonsense Reasoning
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Benchmark on Arithmetic Reasoning
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Conclusion and Outlooks
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Conclusion:
• QuanTA is an efficient, easy-to-implement, high-rank fine-tuning method with no inference overhead
• QuanTA leverages quantum-inspired techniques to achieve high-rank adaptations
• QuanTA is guaranteed by universality theorem and rank representation theorem
• QuanTA demonstrates better performance with extremely few parameters on various tasks
Outlook:
• Apply QuanTA in other domains such as image or video generation
• Integrate QuanTA with other fine-tuning methods such as quantization
• Explore additional optimization techniques tailored specifically for QuanTA
• Design new fine-tuning methods based on principles from quantum computing


	QuanTA: Efficient High-Rank Fine-Tuning of LLMs with Quantum-Informed Tensor Adaptation
	Workflow with Training LLMs
	LoRA Is Not Always Sufficient
	Quantum-informed Tensor Adaptation
	Easy to Implement
	Theoretical Guarantees
	Benchmark on DROP Dataset
	Benchmark on Commonsense Reasoning
	Benchmark on Arithmetic Reasoning
	Conclusion and Outlooks

