

A

QuanTA: Efficient High-Rank Fine-Tuning of LLMs with **Quantum-Informed Tensor Adaptation**

Zhuo Chen¹², Rumen Dangovski¹³, Charlotte Loh¹³, Owen Dugan¹², Di Luo^{124*}, Marin Soljacic¹²

¹The NSF AI Institute for Artificial Intelligence and Fundamental Interactions ²Department of Physics, Massachusetts Institute of Technology ³Department of EECS, Massachusetts Institute of Technology ⁴Department of Physics, Harvard University

Workflow with Training LLMs

Full fine-tuning:

- Pro
 - Most flexible
 - \circ High score
- Con
 - \circ High cost
 - \circ Prone to overfitting
 - \circ Catastrophic forgetting

LORA: LOW-RANK ADAPTATION OF LARGE LAN-GUAGE MODELS

Edward Hu* Yelong Shen* Phillip Wallis Zeyuan Allen-Zhu Yuanzhi Li Shean Wang Lu Wang Weizhu Chen

LoRA Is Not Always Sufficient

- LoRA works well for tasks with low intrinsic rank
- LoRA may struggle for tasks with high intrinsic rank

How to achieve parameter efficient high-rank fine-tuning?

Quantum-informed Tensor Adaptation

Efficient high-rank finetuning

Easy to Implement

Apply QuanTA weights	$(\mathcal{T}x)_{i_1,i_2,i_3} = \sum_{k_1,k_2} T_{i_1,i_2;k_1,k_2}^{(1)} \sum_{j_1,k_3} T_{k_1,i_3;j_1,k_3}^{(2)} \sum_{j_2,j_3} T_{k_2,k_3;j_2,j_3}^{(3)} x_{j_1,j_2,j_3}$
T ⁽ⁱ⁾ 's to input x	<pre>torch.einsum("abc,efbc,diaf,ghde->ghi", x, T_3, T_2, T_1)</pre>

Calculate Full QuanTA matrix	$\mathcal{T}_{i;j} = \mathcal{T}_{i_1, i_2, i_3; j_1, j_2, j_3} = \sum_{k_1, k_2} T_{i_1, i_2; k_1, k_2}^{(1)} \sum_{k_3} T_{k_1, i_3; j_1, k_3}^{(2)} T_{k_2, k_3; j_2, j_3}^{(3)}$
	<pre>torch.einsum("efbc,diaf,ghde->ghiabc", T_3, T_2, T_1)</pre>

No inference overhead!

Theoretical Guarantees

Theorem 6.1 (Universality of QuanTA). Let W be an arbitrary matrix of shape $2^M \times 2^M$. For any collection of local dimensions $\{d_n\}$ such that each d_n is a power of 2 and $\prod_n d_n = 2^M$, it is always possible to decompose W into a finite sequence of tensors $\{T^{(\alpha)}\}$, where each tensor applies on two axes with local dimensions $d_{m(\alpha)}$ and $d_{n(\alpha)}$.

Theorem 6.2 (Rank representation). Let $R = r(\mathcal{T})$ be the rank of the full QuanTA operator, $R^{(\alpha)} = r(T^{(\alpha)})$ be the rank of individual tensors, d be the total dimension of \mathcal{T} , $d^{(\alpha)} = d_{m^{(\alpha)}}d_{n^{(\alpha)}}$ be the total dimension of the individual tensor $T^{(\alpha)}$, and N_T be the total number of tensors. The following inequality always holds

$$\sum_{\alpha} \frac{dR^{(\alpha)}}{d^{(\alpha)}} - d(N_T - 1) \le R \le \min_{\alpha} \frac{dR^{(\alpha)}}{d^{(\alpha)}}.$$

Theorem 6.3 (Composition openness). There exists a set $\mathbb{S} = \{\mathcal{M}_k\}$ of matrices generated from a fixed QuanTA structure and two matrices $\mathcal{M}_1, \mathcal{M}_2 \in \mathbb{S}$ such that $\mathcal{M}_1 \mathcal{M}_2 \notin \mathbb{S}$.

Benchmark on DROP Dataset

Model	PEFT Method	# Params (%)	F_1 Score (\uparrow)
	FT	100%	59.4
	Series	0.747%	58.8
	Parallel	0.747%	59.0
	$LoRA_{r=8}$	0.062%	54.0
LLawA27B	$LoRA_{r=32}$	0.249%	54.8
	$LoRA_{r=128}$	0.996%	56.2
	QuanTA ₁₆₋₈₋₈₋₄ (Ours)	0.041%	59.5
	QuanTA ₁₆₋₁₆₋₁₆ (Ours)	0.261%	59.6
	$LoRA_{r=8}$	0.050%	61.0
LLawiA213B	QuanTA ₁₆₋₈₋₈₋₅ (Ours)	0.029%	69.0
LL aMA2-on	$LoRA_{r=8}$	0.024%	74.3
	QuanTA ₁₆₋₈₋₈₋₈ (Ours)	0.014%	79.4

Benchmark on Commonsense Reasoning

Model	PEFT Method	# Params (%)	Accuracy (†)								
widder			BoolQ	PIQA	SIQA	HellaS.	WinoG.	ARC-e	ARC-c	OBQA	Avg.
GPT-3 _{175B} *	_	_	60.5	81.0	_	78.9	70.2	68.8	51.4	57.6	_
PaLM _{540B} *	_	_	88.0	82.3	_	83.4	81.1	76.6	53.0	53.4	_
ChatGPT*	_	_	73.1	85.4	68.5	78.5	66.1	89.8	79.9	74.8	77.0
	FT	100%	71.3	82.1	78.6	90.2	79.0	82.9	67.2	76.8	78.5
	Prefix*	0.11%	64.3	76.8	73.9	42.1	72.1	72.9	54.0	60.6	64.6
	Series*	0.99%	63.0	79.2	76.3	67.9	75.7	74.5	57.1	72.4	70.8
LL aMA	Parallel*	3.54%	67.9	76.4	78.8	69.8	78.9	73.7	57.3	75.2	72.3
LLawA7B	LoRA*	0.83%	68.9	80.7	77.4	78.1	78.8	77.8	61.3	74.8	74.7
	$DoRA^{\dagger}$	0.43%	70.0	82.6	79.7	83.2	80.6	80.6	65.4	77.6	77.5
	DoRA^{\dagger}	0.84%	69.7	83.4	78.6	87.2	81.0	81.9	66.2	79.2	78.4
	QuanTA (Ours)	0.041%	71.6	83.0	79.7	91.8	81.8	84.0	68.3	82.1	80.3
	Prefix*	0.03%	65.3	75.4	72.1	55.2	68.6	79.5	62.9	68.0	68.4
	Series*	0.80%	71.8	83.0	79.2	88.1	82.4	82.5	67.3	81.8	79.5
	Parallel*	2.89%	72.5	84.8	79.8	92.1	84.7	84.2	71.2	82.4	81.5
LLaMA _{13B}	LoRA*	0.67%	72.1	83.5	80.5	90.5	83.7	82.8	68.3	82.4	80.5
	DoRA^{\dagger}	0.35%	72.5	85.3	79.9	90.1	82.9	82.7	69.7	83.6	80.8
	$DoRA^{\dagger}$	0.68%	72.4	84.9	81.5	92.4	84.2	84.2	69.6	82.8	81.5
	QuanTA (Ours)	0.029%	73.2	85.4	82.1	93.4	85.1	87.8	73.3	84.4	83.1
LLaMA2 _{7B}	FT	100%	72.9	83.0	79.8	92.4	83.0	86.6	72.0	80.1	81.2
	$LoRA^{\dagger}$	0.83%	69.8	79.9	79.5	83.6	82.6	79.8	64.7	81.0	77.6
	$DoRA^{\dagger}$	0.43%	72.0	83.1	79.9	89.1	83.0	84.5	71.0	81.2	80.5
	$DoRA^{\dagger}$	0.84%	71.8	83.7	76.0	89.1	82.6	83.7	68.2	82.4	79.7
	QuanTA (Ours)	0.041%	72.4	83.8	79.7	92.5	83.9	85.3	72.5	82.6	81.6

Benchmark on Arithmetic Reasoning

Model	PEFT Method	# Params (%) -	Accuracy (↑)					
			AQuA	GSM8K	MAWPS	SVAMP	Avg. W/O AQuA	
GPT-3.5 _{175B} *	-	_	38.9	56.4	87.4	69.6	71.1	
LLaMA27B	FT	100%	19.3	65.2	92.0	80.7	79.3	
	LoRA	0.83%	17.5	65.7	91.2	80.8	79.6	
	QuanTA (Ours)	0.19%	16.7	67.0	94.3	80.3	80.5	
LLaMA2 _{13B}	LoRA	0.67%	16.7	72.3	90.8	84.3	82.5	
	QuanTA (Ours)	0.13%	18.9	72.4	94.5	84.8	83.9	

Conclusion and Outlooks

Conclusion:

- QuanTA is an efficient, easy-to-implement, high-rank fine-tuning method with no inference overhead
- QuanTA leverages quantum-inspired techniques to achieve high-rank adaptations
- QuanTA is guaranteed by universality theorem and rank representation theorem
- QuanTA demonstrates better performance with extremely few parameters on various tasks

Outlook:

- Apply QuanTA in other domains such as image or video generation
- Integrate QuanTA with other fine-tuning methods such as quantization
- Explore additional optimization techniques tailored specifically for QuanTA
- Design new fine-tuning methods based on principles from quantum computing