
Fast Tree-Field Integrators
From Low-Displacement Rank to Topological Transformers

Krzysztof Choromanski*, Arijit Sehanobish*, Somnath Basu Roy Chowdhury*, Han Lin*, Avinava Dubey*, Tamas Sarlos, Snigdha
Chaturvedi

* equal contribution

https://openreview.net/profile?id=~Krzysztof_Marcin_Choromanski1
https://openreview.net/profile?id=~Arijit_Sehanobish1
https://openreview.net/profile?id=~Han_Lin1
https://openreview.net/profile?id=~Kumar_Avinava_Dubey1
https://openreview.net/profile?id=~Tamas_Sarlos1
https://openreview.net/profile?id=~Snigdha_Chaturvedi2
https://openreview.net/profile?id=~Snigdha_Chaturvedi2

Problem Formulation: Efficient Graph Field Integration
Compute efficiently (in the sub-quadratic time in the number of
nodes N of the graph) the following expressions for every node v
of the given graph G

v

Problem Formulation: Efficient Graph Field Integration
Compute efficiently (in the sub-quadratic time in the number of
nodes N of the graph) the following expressions for every node v
of the given graph G

integration
over all the
nodes

w

v

Problem Formulation: Efficient Graph Field Integration
Compute efficiently (in the sub-quadratic time in the number of
nodes N of the graph) the following expressions for every node v
of the given graph G

integration
over all the
nodes

wtensor field defined on
the graph

v

Problem Formulation: Efficient Graph Field Integration
Compute efficiently (in the sub-quadratic time in the number of
nodes N of the graph) the following expressions for every node v
of the given graph G

similarity between two nodes
(e.g. a function of the shortest-path
distance between them)

tensor field defined on
the graph

integration
over all the
nodes

w

v

Problem Formulation: Efficient Graph Field Integration
Compute efficiently (in the sub-quadratic time in the number of
nodes N of the graph) the following expressions for every node v
of the given graph G

similarity between two nodes
(e.g. a function of the shortest-path
distance between them)

tensor field defined on
the graph

integration
over all the
nodes

Graph as a discretization of the 2-dim manifold:

w

v

Problem Formulation: Efficient Graph Field Integration
Compute efficiently (in the sub-quadratic time in the number of
nodes N of the graph) the following expressions for every node v
of the given graph G

similarity between two nodes
(e.g. a function of the shortest-path
distance between them)

tensor field defined on
the graph

integration
over all the
nodes

Graph as a discretization of the 2-dim manifold:

Applications: interpolation on manifolds, topological masking mechanisms for Transformers with structural
inputs, physics simulations in curved spaces, Wasserstein barycenter, (Fused) Gromov Wasserstein, …

w

v

Integration on the Low-Distortion Trees for

w

v

● integration of quadratic
time complexity, not an
option for large graphs

● weighted trees
approximating original
graph metric

● minimum spanning tree
(MST) in several
applications

● we propose polylog-linear
algorithms working for
several classes of

● based on the
divide-and-conquer
strategy and FFT

(f-Integration)

The Algorithm (Fast Tree-Field Integrator: FTFI)

Cordial Functions

[cordial functions]:

[f-integration with cordial functions]:

rational, trigonometric, products of exponentials and
polynomials,...

Runtime Efficiency

Runtime comparison of FTFI with BTFI as a function of the number of vertices, N. Left: Synthetic graphs.
Right: Mesh-graphs from Thingi10K. The speed is not necessarily monotonic in N as it depends on the
distribution of lengths of the shortest paths. For each graph, 10 experiments were run (std. shown via
dotted lines).

Interpolation on Meshes

Speed (pre-processing time) and accuracy (cosine similarity) comparison of the FTFI and other
baselines for vertex normal prediction on meshes. Cosine similarity of BFFI and FTFI almost overlaps.
The last two figures are qualitative examples showcasing the tradeoff between cosine similarity and
preprocessing time for meshes of sizes 3K and 5K nodes respectively.

Graph Classification

Trade-off plot comparing graph classification accuracy and feature processing time for the classifiers using FTFI
and BGFI. FTFI achieves similar accuracy as BGFI while significantly reducing fp time across most datasets. We
report the reduction in FTFI’s processing time (±x%) compared to BGFI using a dotted line.

Improving Approximation Quality for Distance Matrices

Left: Relative Frobenius norm error as a function of the number of training iterations for different sizes n and
learnable quadratic f. Middle: Comparison of the training of different rational functions f with num:d defining the
degree of the numerator and den:d, the degree of the denominator for the synthetic graph obtained from a path on
N = 800 by adding 600 random edges and assigning random weights taken from (0, 1). Right: constructed
similarly, but for a sampled mesh graphs from Thingi10k dataset.

Improving Vision &
Video Transformers

Improving Vision &
Video Transformers

Improving Vision &
Video Transformers

topological
masking can be
thought of as
modulating
regular attention
with a particular
graph kernel
matrix

From block-Toeplitz
matrices to
differential equations
on graphs: towards a
general theory for
scalable masked
Transformers;
Choromanski et al.,
ICML 2022

Improving Vision &
Video Transformers

Improving Vision & Video Transformers

Performance of Topological Vision Transformers with tree-based masking. For each attention kernel, we
present the results of the best variant in bold and Performer baselines in blue.

Experiments with the RPE mechanism for ViT-L and on ImageNet. We
observe that FTFI provides 7% accuracy gain compared to the
Performer variant.

Thank You for Your Attention !

