



LLaNA: Large Language and NeRF Assistant

NeurIPS 2024

Andrea Amaduzzi, Pierluigi Zama Ramirez, Giuseppe Lisanti, Samuele Salti, Luigi Di Stefano

Motivation

Neural Radiance Fields (NeRFs) can overcome limitations of 3D explicit representations

Neural Radiance Fields (NeRFs) can provide a compact and meaningful representation of objects' geometry and appearance

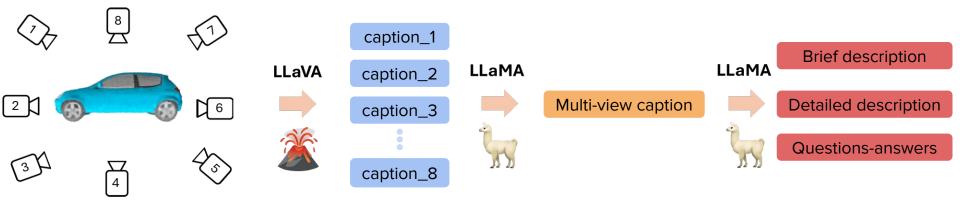
Multimodal Large Language Models (MLLMs) can process 3D explicit representations

Is it possible to perform language tasks on NeRF, without rendering?

Tokenizer \mathbf{W}_I

\mathbf{b}_{I}^{T} **ASSISTANT:** \mathbf{W}_1 It is a red nerf2vec Large sports car, with **Projector** $\mathbf{b}_{\parallel}^{T}$ Language steel wheels Model and black \mathbf{W}_2 leather seats Tokenizer Wo <n_end> Which object is this?

USER: <n_start>


LLaNA can perform the novel tasks of NeRF captioning and NeRF Q&A

nerf2vec: Ramirez, et al. "Deep Learning on Object-centric 3D Neural Fields", ICLR 2023

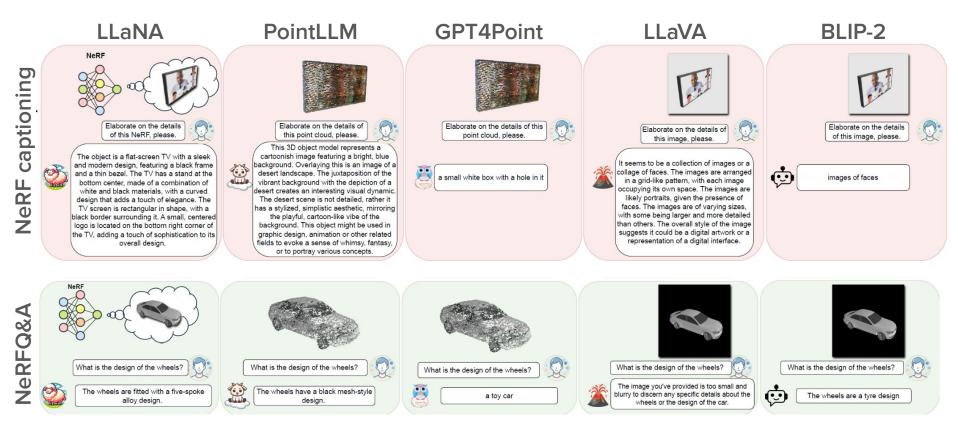
ShapeNeRF-Text: the first Nerf-Language benchmark

Dataset size:

- 40K objects from ShapeNet
- 40K brief descriptions
- 40K detailed descriptions
- 160K QA conversations

Quantitative experiments

NeRF captioning


NeRF Q&A

Model	Modality	S-BERT	SimCSE	BLEU-1	ROUGE-L	METEOR	Model	Modality	S-BERT	SimCSE	BLEU-1	ROUGE-L	METEOR
LLaVA-vicuna-13b	Image (FV)	59.08	58.87	23.63	23.55	22.55	LLaVA-vicuna-13b	Image (FV)	71.61	70.98	20.19	30.42	32.53
LLaVA-vicuna-13b	Image (BV)	50.09	50.33	13.77	21.36	13.18	LLaVA-vicuna-13b	Image (BV)	68.25	69.06	20.03	29.84	32.27
LLaVA-vicuna-13b	Image (MV)	60.21	59.51	15.07	32.16	14.64	LLaVA-vicuna-13b	Image (MV)	71.84	71.16	20.04	30.20	33.46
LLaVA-vicuna-7b	Image (FV)	57.55	57.68	14.99	22.82	14.36	LLaVA-vicuna-7b	Image (FV)	71.79	71.96	25.79	34.04	34.86
LLaVA-vicuna-7b	Image (BV)	53.11	54.46	14.73	22.47	14.05	LLaVA-vicuna-7b	Image (BV)	70.88	70.93	25.17	33.30	34.22
BLIP-2 FlanT5-xxl	Image (FV)	41.27	40.69	0.18	7.83	2.60	BLIP-2 FlanT5-xxl	Image (FV)	45.20	47.92	11.50	20.16	13.49
BLIP-2 FlanT5-xxl	Image (BV)	38.49	37.89	0.19	7.72	2.58	BLIP-2 FlanT5-xxl	Image (BV)	45.06	47.66	11.50	19.98	13.44
PointLLM-7b	Point cloud	59.02	58.30	10.28	19.26	10.55	PointLLM-7b	Point cloud	74.70	74.40	36.81	44.41	39.76
GPT4Point-Opt-2.7b	Point cloud	42.44	38.33	3.72	9.21	5.13	GPT4Point-Opt-2.7b	Point cloud	27.62	31.41	6.26	9.38	5.41
3D-LLM	Mesh + MV	60.00	53.91	1.58	14.40	5.28	3D-LLM	Mesh + MV	69.62	67.55	32.19	40.95	35.83
LLaNA-7b	NeRF	77.43	79.81	41.32	36.18	32.39	LLaNA-7b	NeRF	81.03	81.56	46.16	53.17	50.15

FV: "front view", BV: "back view", MV: "multiple views"

LLaNA outperforms MLLMs processing discrete representations

Qualitative experiments

Conclusion

Contributions:

- LLaNA is the first MLLM to demonstrate reasoning capabilities on NeRF data
- LLaNA enables novel NeRF-language tasks (captioning, Q&A)
- ShapeNeRF-Text is the first existing dataset of paired NeRF-language data

Future directions:

- Generalization to real-world NeRFs
- Support for more complex NeRF architectures
- Extension to scene-level NeRFs

