

Haoxuan Chen^{*1}, Yinuo Ren^{*1}, Lexing Ying^{2,1}, Grant M. Rotskoff^{3,1}

{haoxuanc, yinuoren, lexing, rotskoff}@stanford.edu

* Equal Contribution ¹ICME ²Department of Mathematics ³Department of Chemistry Stanford University November 12, 2024

Accelerating Diffusion Models with Parallel Sampling:

Inference at Sub-Linear Time Complexity

1 Introduction

2 Algorithm

3 Main Results

Section 1: Introduction

Continuous Diffusion Models

Introduction

(a) DALL·E 3

(b) Stable Diffusion

(c) Al4Science

Figure: Diffusion and flow-based generative models have exerted huge impacts on scientific research in many fields.

Problem Setting

> Task: Sample from data distribution p_0 accurately and efficiently

Problem Setting

- > Task: Sample from data distribution p_0 accurately and efficiently
- > Forward SDE:

$$\mathrm{d} \boldsymbol{x}_s = \boldsymbol{eta}_s(\boldsymbol{x}_s) \mathrm{d} s + \boldsymbol{\sigma}_s \mathrm{d} \boldsymbol{w}_s, \quad \text{with} \quad \boldsymbol{x}_0 \sim p_0$$

Problem Setting

- > Task: Sample from data distribution p_0 accurately and efficiently
- > Forward SDE:

$$\mathrm{d} \boldsymbol{x}_s = \boldsymbol{eta}_s(\boldsymbol{x}_s) \mathrm{d} s + \boldsymbol{\sigma}_s \mathrm{d} \boldsymbol{w}_s, \quad ext{with} \quad \boldsymbol{x}_0 \sim p_0$$

Backward SDE:

$$\mathrm{d}\boldsymbol{\bar{x}}_{t} = \left[-\boldsymbol{\bar{\beta}}_{t}(\boldsymbol{\bar{x}}_{t}) + \frac{\boldsymbol{\bar{\sigma}}_{t}\boldsymbol{\bar{\sigma}}_{t}^{\top} + \boldsymbol{\bar{\upsilon}}_{t}\boldsymbol{\bar{\upsilon}}_{t}^{\top}}{2}\nabla\log\boldsymbol{\bar{p}}_{t}(\boldsymbol{\bar{x}}_{t})\right]\mathrm{d}t + \boldsymbol{\bar{\upsilon}}_{t}\mathrm{d}\boldsymbol{w}_{t}$$

with
$$\overline{p}_0 = p_T pprox \mathcal{N}(\mathbf{0}, \boldsymbol{I})$$
 and $\overline{p}_T = p_0$

Problem Setting

- > Task: Sample from data distribution p_0 accurately and efficiently
- > Forward SDE:

$$\mathrm{d} \boldsymbol{x}_s = \boldsymbol{eta}_s(\boldsymbol{x}_s) \mathrm{d} s + \boldsymbol{\sigma}_s \mathrm{d} \boldsymbol{w}_s, \quad ext{with} \quad \boldsymbol{x}_0 \sim p_0$$

Backward SDE:

$$\mathrm{d}\boldsymbol{\bar{x}}_{t} = \left[-\boldsymbol{\bar{\beta}}_{t}(\boldsymbol{\bar{x}}_{t}) + \frac{\boldsymbol{\bar{\sigma}}_{t}\boldsymbol{\bar{\sigma}}_{t}^{\top} + \boldsymbol{\bar{\upsilon}}_{t}\boldsymbol{\bar{\upsilon}}_{t}^{\top}}{2} \nabla \log \boldsymbol{\bar{p}}_{t}(\boldsymbol{\bar{x}}_{t}) \right] \mathrm{d}t + \boldsymbol{\bar{\upsilon}}_{t}\mathrm{d}\boldsymbol{w}_{t}$$

with ${\overline p}_0 = p_T pprox \mathcal{N}(\mathbf{0}, \boldsymbol{I})$ and ${\overline p}_T = p_0$

> Score Function: $s_t^{ heta}(x_t) \approx \nabla \log p_t(x_t)$ by optimizing

$$\mathcal{L}(\theta) = \int_0^T \psi_t \mathbb{E}_{\boldsymbol{x}_t \sim p_t} \left[\left\| \nabla \log p_t(\boldsymbol{x}_t) - \boldsymbol{s}_t^{\theta}(\boldsymbol{x}_t) \right\|^2 \right] \mathrm{d}t$$

Problem Setting

- > Task: Sample from data distribution p_0 accurately and efficiently
- Forward SDE:

$$\mathrm{d} \boldsymbol{x}_s = \boldsymbol{eta}_s(\boldsymbol{x}_s) \mathrm{d} s + \boldsymbol{\sigma}_s \mathrm{d} \boldsymbol{w}_s, \quad ext{with} \quad \boldsymbol{x}_0 \sim p_0$$

Backward SDE:

$$\mathrm{d}\boldsymbol{\bar{x}}_{t} = \left[-\boldsymbol{\bar{\beta}}_{t}(\boldsymbol{\bar{x}}_{t}) + \frac{\boldsymbol{\bar{\sigma}}_{t}\boldsymbol{\bar{\sigma}}_{t}^{\top} + \boldsymbol{\bar{\upsilon}}_{t}\boldsymbol{\bar{\upsilon}}_{t}^{\top}}{2}\nabla\log\boldsymbol{\bar{p}}_{t}(\boldsymbol{\bar{x}}_{t})\right]\mathrm{d}t + \boldsymbol{\bar{\upsilon}}_{t}\mathrm{d}\boldsymbol{w}_{t}$$

with ${\overline p}_0 = p_T pprox \mathcal{N}(\mathbf{0}, \boldsymbol{I})$ and ${\overline p}_T = p_0$

▶ Score Function: $s_t^{\theta}(x_t) \approx \nabla \log p_t(x_t)$ by optimizing

$$\mathcal{L}(\theta) = \int_0^T \psi_t \mathbb{E}_{\boldsymbol{x}_t \sim p_t} \left[\left\| \nabla \log p_t(\boldsymbol{x}_t) - \boldsymbol{s}_t^{\theta}(\boldsymbol{x}_t) \right\|^2 \right] \mathrm{d}t$$

Implementations: SDE ($m{v}_t=m{\sigma}_t$), Probability Flow ODE (PF-ODE, $m{v}_t\equivm{0}_{5/21}$

Error Analysis

Take
$$\beta_s(x_s) = -\frac{1}{2}x_s$$
 and $\sigma_s = I$:
Forward SDE: $dx_s = -\frac{1}{2}x_s ds + dw_s$ with $x_0 \sim p_0$

Error Analysis

Т

Take
$$\beta_s(\boldsymbol{x}_s) = -\frac{1}{2}\boldsymbol{x}_s$$
 and $\boldsymbol{\sigma}_s = \boldsymbol{I}$:
> Forward SDE: $d\boldsymbol{x}_s = -\frac{1}{2}\boldsymbol{x}_s ds + d\boldsymbol{w}_s$ with $\boldsymbol{x}_0 \sim p_0$
> Backward SDE: $d\bar{\boldsymbol{x}}_t = \left[\frac{1}{2}\bar{\boldsymbol{x}}_t + \frac{1+v^2}{2}\nabla\log\bar{p}_t(\bar{\boldsymbol{x}}_t)\right] dt + v d\boldsymbol{w}_t$, with $\bar{p}_0 = p_T \approx \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ and $\bar{p}_T = p_0$

Error Analysis

Fake
$$oldsymbol{eta}_s(oldsymbol{x}_s)=-rac{1}{2}oldsymbol{x}_s$$
 and $oldsymbol{\sigma}_s=oldsymbol{I}$:

- > Forward SDE: $dx_s = -\frac{1}{2}x_s ds + dw_s$ with $x_0 \sim p_0$
- > Backward SDE: $d\bar{\boldsymbol{x}}_t = \left[\frac{1}{2}\bar{\boldsymbol{x}}_t + \frac{1+v^2}{2}\nabla\log\bar{p}_t(\bar{\boldsymbol{x}}_t)\right]dt + vd\boldsymbol{w}_t$, with $\bar{p}_0 = p_T \approx \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ and $\bar{p}_T = p_0$

Theorem (Error Analysis of Continuous Diffusion Models [BDBDD23])

Suppose $t_0 = 0 \leq \cdots \leq t_N = T - \delta$ satisfies $t_{k+1} - t_k \leq \kappa(T - t_{k+1})$ and

$$\sum_{k=0}^{N-1} (s_{k+1} - s_k) \mathbb{E}_{\bar{\boldsymbol{x}}_{s_k} \sim \bar{p}_{s_k}} \left[\left\| \nabla \log \bar{p}_{s_k}(\bar{\boldsymbol{x}}_{s_k}) - \overline{\hat{\boldsymbol{s}}}_{s_k}^{\theta}(\boldsymbol{x}_{s_k}) \right\|^2 \right] \le \epsilon.$$

Then with

$$T = \mathcal{O}(\log(d\epsilon^{-1})), \ \kappa = \mathcal{O}(d^{-1}\epsilon\log^{-1}(d\epsilon^{-1})), \ N = \mathcal{O}(d\epsilon^{-1}\log^2(d\epsilon^{-1})),$$

we have

$$D_{\mathrm{KL}}(p_{\delta} \| \widehat{q}_{t_N}) \lesssim de^{-T} + \epsilon + d\kappa T \lesssim \epsilon.$$

Error Analysis

Theorem (Error Analysis of Continuous Diffusion Models [BDBDD23]) With

$$T = \mathcal{O}(\log(d\epsilon^{-1})), \ \kappa = \mathcal{O}(d^{-1}\epsilon \log^{-1}(d\epsilon^{-1})), \ N = \mathcal{O}(d\epsilon^{-1}\log^2(d\epsilon^{-1})),$$

we have

$$D_{\mathrm{KL}}(p_{\delta} \| \widehat{q}_{t_N}) \lesssim de^{-T} + \epsilon + d\kappa T \lesssim \epsilon.$$

Error Analysis

Theorem (Error Analysis of Continuous Diffusion Models [BDBDD23]) With

$$T = \mathcal{O}(\log(d\epsilon^{-1})), \ \kappa = \mathcal{O}(d^{-1}\epsilon \log^{-1}(d\epsilon^{-1})), \ N = \mathcal{O}(d\epsilon^{-1}\log^2(d\epsilon^{-1})),$$

we have

$$D_{\mathrm{KL}}(p_{\delta} \| \widehat{q}_{t_N}) \lesssim de^{-T} + \epsilon + d\kappa T \lesssim \epsilon.$$

> Truncation Error: Error caused by approximating p_T by p_{∞} , of the order $\mathcal{O}(d\exp(-T))$;

Error Analysis

Theorem (Error Analysis of Continuous Diffusion Models [BDBDD23]) With

$$T = \mathcal{O}(\log(d\epsilon^{-1})), \ \kappa = \mathcal{O}(d^{-1}\epsilon \log^{-1}(d\epsilon^{-1})), \ N = \mathcal{O}(d\epsilon^{-1}\log^2(d\epsilon^{-1})),$$

we have

$$D_{\mathrm{KL}}(p_{\delta} \| \widehat{q}_{t_N}) \lesssim de^{-T} + \epsilon + d\kappa T \lesssim \epsilon.$$

- > Truncation Error: Error caused by approximating p_T by p_{∞} , of the order $\mathcal{O}(d \exp(-T))$;
- > Approximation Error: Error caused by approximating $\nabla \log p_t(\boldsymbol{x}_t)$ by NN $\widehat{s}_t^{\theta}(\boldsymbol{x}_t)$, assumed to be of $\mathcal{O}(\epsilon)$;

Error Analysis

Theorem (Error Analysis of Continuous Diffusion Models [BDBDD23]) With

$$T = \mathcal{O}(\log(d\epsilon^{-1})), \ \kappa = \mathcal{O}(d^{-1}\epsilon \log^{-1}(d\epsilon^{-1})), \ N = \mathcal{O}(d\epsilon^{-1}\log^2(d\epsilon^{-1})),$$

we have

$$D_{\mathrm{KL}}(p_{\delta} \| \widehat{q}_{t_N}) \lesssim de^{-T} + \epsilon + d\kappa T \lesssim \epsilon.$$

- > Truncation Error: Error caused by approximating p_T by p_{∞} , of the order $\mathcal{O}(d \exp(-T))$;
- > Approximation Error: Error caused by approximating $\nabla \log p_t(\boldsymbol{x}_t)$ by NN $\widehat{s}_t^{\theta}(\boldsymbol{x}_t)$, assumed to be of $\mathcal{O}(\epsilon)$;
- > Discretization Error: Error caused by numerically solving the backward SDE, *e.g.* exponential integrator [ZC22].

Inference Cost

Inference Cost

- > The evaluation of the score function $s^{ heta}_t$ is expensive
- > The inference process of continuous diffusion models requires $\widetilde{\mathcal{O}}(d)$ times of score function evaluations

Possible Solutions

- > DDIM [SME20]
- > Higher-order schemes [DVK22, KAAL22, LHE+24]
- > Operator learning [ZNV+23]
- > Knowledge distillation [LL21, MRG⁺23]
- > Consistency model [SDCS23, SD23, LS24]
- > Parallel sampling [SBE+24, TTL+24]

Section 2: Algorithm

Parallel Sampling

Picard Iteration For $k \in [0: K-1]$,

Parallel Sampling

Picard Iteration

For $k \in [0: K - 1]$,

> Solve ODE $\mathrm{d} oldsymbol{x}_t = oldsymbol{f}_t(oldsymbol{x}_t) \mathrm{d} t$ in parallel

$$oldsymbol{x}_t^{(0)}\equivoldsymbol{x}_0, ext{ and }oldsymbol{x}_t^{(k+1)}:=oldsymbol{x}_0+\int_0^toldsymbol{f}_s(oldsymbol{x}_s^{(k)})\mathrm{d}s$$

Parallel Sampling

Picard Iteration

For $k \in [0: K - 1]$,

> Solve ODE $\mathrm{d} oldsymbol{x}_t = oldsymbol{f}_t(oldsymbol{x}_t) \mathrm{d} t$ in parallel

$$oldsymbol{x}_t^{(0)}\equivoldsymbol{x}_0, ext{ and }oldsymbol{x}_t^{(k+1)}:=oldsymbol{x}_0+\int_0^toldsymbol{f}_s(oldsymbol{x}_s^{(k)})\mathrm{d}s$$

> Simulate Langevin dynamics $\mathrm{d} m{x}_t = -
abla V(m{x}_t) \mathrm{d} t + \mathrm{d} m{w}_t$ in parallel [ACV24]

$$oldsymbol{x}_t^{(0)}\equivoldsymbol{x}_0, ext{ and }oldsymbol{x}_t^{(k+1)}:=oldsymbol{x}_0-\int_0^t
abla V(oldsymbol{x}_t^{(k)})\mathrm{d}s+oldsymbol{w}_t$$

Parallel Sampling

Picard Iteration

For $k \in [0: K - 1]$,

> Solve ODE $\mathrm{d} oldsymbol{x}_t = oldsymbol{f}_t(oldsymbol{x}_t) \mathrm{d} t$ in parallel

$$oldsymbol{x}_t^{(0)}\equivoldsymbol{x}_0, ext{ and }oldsymbol{x}_t^{(k+1)}:=oldsymbol{x}_0+\int_0^toldsymbol{f}_s(oldsymbol{x}_s^{(k)})\mathrm{d}s$$

> Simulate Langevin dynamics $\mathrm{d} m{x}_t = -
abla V(m{x}_t) \mathrm{d} t + \mathrm{d} m{w}_t$ in parallel [ACV24]

$$oldsymbol{x}_t^{(0)}\equivoldsymbol{x}_0, ext{ and } oldsymbol{x}_t^{(k+1)}:=oldsymbol{x}_0-\int_0^t
abla V(oldsymbol{x}_t^{(k)}) \mathrm{d}s+oldsymbol{w}_t$$

> Sample from diffusion models in parallel (This work)

$$\mathrm{d}\widehat{\boldsymbol{y}}_{t_n,\tau}^{(k+1)} = \left[\frac{1}{2}\widehat{\boldsymbol{y}}_{t_n,\tau}^{(k+1)} + \boldsymbol{s}_{t_n+g_n(\tau)}^{\theta}\left(\widehat{\boldsymbol{y}}_{t_n,g_n(\tau)}^{(k)}\right)\right]\mathrm{d}\tau + \mathrm{d}\boldsymbol{w}_{t_n+\tau}$$

Parallel Sampling

Figure: Illustration of PIADM-SDE/ODE.

Section 3: Main Results

Assumptions

Regularity of data distribution: p₀ has finite second moment and is normalized, i.e., cov_{p0}(x₀) = I_d

Assumptions

- > Regularity of data distribution: p_0 has finite second moment and is normalized, i.e., $cov_{p_0}(x_0) = I_d$
- > Bounded learned score: The learned score s_t^{θ} has bounded C^1 norm with Lipschitz const L_s .

Assumptions

- > Regularity of data distribution: p_0 has finite second moment and is normalized, i.e., $cov_{p_0}(x_0) = I_d$
- > Bounded learned score: The learned score s_t^{θ} has bounded C^1 norm with Lipschitz const L_s .
- > δ -accurate score estimation:

Assumptions

- > Regularity of data distribution: p_0 has finite second moment and is normalized, i.e., $cov_{p_0}(x_0) = I_d$
- > Bounded learned score: The learned score s_t^{θ} has bounded C^1 norm with Lipschitz const L_s .
- > δ -accurate score estimation:

SDE The learned score s_t^{θ} is $L^2([0, t_N]) \delta$ -accurate:

$$\mathbb{E}_{\tilde{p}}\left[\sum_{n=0}^{N-1}\sum_{m=0}^{M_n-1}\epsilon_{n,m}\left\|\boldsymbol{s}_{t_n+\tau_{n,m}}^{\theta}\left(\boldsymbol{\tilde{x}}_{t_n+\tau_{n,m}}\right)-\nabla\log\tilde{p}_{t_n+\tau_{n,m}}\left(\boldsymbol{\tilde{x}}_{t_n+\tau_{n,m}}\right)\right\|^2\right] \leq \delta_2^2$$

Assumptions

- > Regularity of data distribution: p_0 has finite second moment and is normalized, i.e., $cov_{p_0}(x_0) = I_d$
- > Bounded learned score: The learned score s_t^{θ} has bounded C^1 norm with Lipschitz const L_s .
- > δ -accurate score estimation:

SDE The learned score s_t^{θ} is $L^2([0, t_N]) \delta$ -accurate:

$$\mathbb{E}_{\tilde{p}}\left[\sum_{n=0}^{N-1}\sum_{m=0}^{M_{n}-1}\epsilon_{n,m}\left\|\boldsymbol{s}_{t_{n}+\tau_{n,m}}^{\theta}\left(\boldsymbol{\tilde{x}}_{t_{n}+\tau_{n,m}}\right)-\nabla\log\boldsymbol{\tilde{p}}_{t_{n}+\tau_{n,m}}\left(\boldsymbol{\tilde{x}}_{t_{n}+\tau_{n,m}}\right)\right\|^{2}\right] \leq \delta_{2}^{2}$$

PF-ODE The learned score s_t^{θ} is $L^{\infty}([0, t_N]) \delta$ -accurate:

$$\mathbb{E}_{\tilde{p}_{t_n+\tau_{n,m}}}\left[\left\|\boldsymbol{s}^{\theta}_{t_n+\tau_{n,m}}\left(\boldsymbol{\tilde{x}}_{t_n+\tau_{n,m}}\right)-\nabla\log\boldsymbol{\tilde{p}}_{t_n+\tau_{n,m}}\left(\boldsymbol{\tilde{x}}_{t_n+\tau_{n,m}}\right)\right\|^2\right] \leq \delta_{\infty}^2.$$

Assumptions

- > Regularity of data distribution: p_0 has finite second moment and is normalized, i.e., $cov_{p_0}(x_0) = I_d$
- > Bounded learned score: The learned score s_t^{θ} has bounded C^1 norm with Lipschitz const L_s .
- > δ -accurate score estimation:

SDE The learned score s_t^{θ} is $L^2([0, t_N]) \delta$ -accurate:

$$\mathbb{E}_{\tilde{p}}\left[\sum_{n=0}^{N-1}\sum_{m=0}^{M_{n}-1}\epsilon_{n,m}\left\|\boldsymbol{s}_{t_{n}+\tau_{n,m}}^{\theta}\left(\boldsymbol{\tilde{x}}_{t_{n}+\tau_{n,m}}\right)-\nabla\log\boldsymbol{\tilde{p}}_{t_{n}+\tau_{n,m}}\left(\boldsymbol{\tilde{x}}_{t_{n}+\tau_{n,m}}\right)\right\|^{2}\right] \leq \delta_{2}^{2}$$

PF-ODE The learned score s_t^{θ} is $L^{\infty}([0, t_N]) \delta$ -accurate:

$$\mathbb{E}_{\tilde{p}_{t_n+\tau_{n,m}}}\left[\left\|\boldsymbol{s}^{\theta}_{t_n+\tau_{n,m}}(\boldsymbol{\tilde{x}}_{t_n+\tau_{n,m}})-\nabla\log\boldsymbol{\tilde{p}}_{t_n+\tau_{n,m}}(\boldsymbol{\tilde{x}}_{t_n+\tau_{n,m}})\right\|^2\right] \leq \delta_{\infty}^2.$$

> Bounded true score (PF-ODE): The true score $\nabla \log p_t$ has bounded C^1 norm with Lipschitz const L_p .

Theorem (Parallel Acceleration for SDE Implementation)

Under assumptions aforementioned, given

$$T = \mathcal{O}(\log(d\delta^{-2})), \quad h = \Theta(1), \quad N = \mathcal{O}\left(\log(d\delta^{-2})\right),$$
$$= \Theta\left(d^{-1}\delta^2\log^{-1}(d\delta^{-2})\right), \quad M = \mathcal{O}\left(d\delta^{-2}\log(d\delta^{-2})\right), \quad K = \widetilde{\mathcal{O}}(\log(d\delta^{-2})),$$

we have the following error bound

$$D_{\mathrm{KL}}(p_{\eta} \| \widehat{q}_{t_N}) \lesssim de^{-T} + d\epsilon T + \delta_2^2 + dT e^{-K} \lesssim \delta^2,$$

with a total of

- > $KN = \widetilde{\mathcal{O}}\left(\log^2(d\delta^{-2})\right)$ approximate time complexity
- > $dM = \widetilde{\mathcal{O}} \left(d^2 \delta^{-2} \right)$ space complexity

for parallalizable $L^2([0, t_N]) \delta$ -accurate score function evaluations.

PF-ODE Implementation

PF-ODE with predictor-corrector [CCL+24] further improves space complexity:

Theorem (Parallel Acceleration for PF-ODE Implementation)

Under assumptions aforementioned, given proper parameter selections, we have $\mathrm{TV}(p_{\eta}, \widehat{q}_{t_N})^2 \lesssim de^{-T} + d\epsilon^2 T^2 + (T^2 + N^2) \delta_{\infty}^2 + dN^2 e^{-K} \lesssim \delta^2$, with a total of

- > $(K + K^{\dagger}N^{\dagger})N = \widetilde{O}\left(\log^2(d\delta^{-2})\right)$ approximate time complexity
- > $d(M \lor M^{\dagger}) = \widetilde{\Theta} \left(d^{3/2} \delta^{-1} \right)$ space complexity

for parallalizable $L^{\infty}([0, t_N]) \delta$ -accurate score function evaluations.

Remark

$$\mathbb{E}\left[f(x_t) - f(x_0)\right]^2 \lesssim \mathbb{E}\left[\int f'(x_t)b_t + f''(x_t)\sigma dt\right]^2 + \mathbb{E}\left[\int f'(x_t)\sqrt{2\sigma}dw_t\right]^2$$
$$\sim O(t^2) + \sigma O(t),$$

Proof Sketch

Theorem (Generalized Girsanov's Theorem)

Let $\boldsymbol{\alpha}(t,\omega) \in \mathcal{V}^m$, $\boldsymbol{\Sigma}(t,\omega) \in \mathcal{V}^{m \times n}$, and $(\boldsymbol{w}_t(\omega))_{t \geq 0}$ be a Wiener process on (Ω, \mathcal{F}, q) . For $t \in [0, T]$, suppose $\boldsymbol{z}_t(\omega)$ satisfies

 $d\boldsymbol{z}_t(\omega) = \boldsymbol{\alpha}(t,\omega)dt + \boldsymbol{\Sigma}(t,\omega)d\boldsymbol{w}_t(\omega),$

where $\Sigma(t,\omega)\delta(t,\omega) = \alpha(t,\omega) - \beta(t,\omega)$, then there exists p on (Ω, \mathcal{F}) s.t.

- 1 $p \ll q$ with the Radon-Nikodym derivative $\frac{\mathrm{d}p}{\mathrm{d}q}(\omega) = M_T(\omega);$
- 2 $\widetilde{\boldsymbol{w}}_t(\omega) = \boldsymbol{w}_t(\omega) + \int_0^t \boldsymbol{\delta}(s,\omega) ds$ is a Wiener process on (Ω, \mathcal{F}, p) ;
- 3 Any continuous path generated by the process z_t satisfies the following SDE under p:

$$\mathrm{d}\widetilde{\boldsymbol{z}}_t(\omega) = \boldsymbol{\beta}(t,\omega)\mathrm{d}t + \boldsymbol{\Sigma}(t,\omega)\mathrm{d}\widetilde{\boldsymbol{w}}_t(\omega).$$

Proof Sketch

In *n*-th block, let $q|_{\mathcal{F}_{t_n}}$ be the measure shared by $\boldsymbol{w}_t(\omega)$ in the Picard iteration 1 Define $d\widetilde{\boldsymbol{w}}_{t_n+\tau}(\omega) = d\boldsymbol{w}_{t_n+\tau}(\omega) + \boldsymbol{\delta}_{t_n}(\tau,\omega)d\tau$, where

$$\boldsymbol{\delta}_{t_n}(\tau,\omega) := \boldsymbol{s}^{\theta}_{t_n+g_n(\tau)}(\widehat{\boldsymbol{y}}^{(K-1)}_{t_n,g_n(\tau)}(\omega)) - \nabla \log \overline{p}_{t_n+\tau}(\widehat{\boldsymbol{y}}^{(K)}_{t_n+\tau}(\omega));$$

Proof Sketch

In *n*-th block, let $q|_{\mathcal{F}_{t_n}}$ be the measure shared by $w_t(\omega)$ in the Picard iteration 1 Define $d\widetilde{w}_{t_n+\tau}(\omega) = dw_{t_n+\tau}(\omega) + \delta_{t_n}(\tau,\omega)d\tau$, where

$$\boldsymbol{\delta}_{t_n}(\tau,\omega) := \boldsymbol{s}^{\boldsymbol{\theta}}_{t_n+g_n(\tau)}(\widehat{\boldsymbol{y}}^{(K-1)}_{t_n,g_n(\tau)}(\omega)) - \nabla \log \overleftarrow{p}_{t_n+\tau}(\widehat{\boldsymbol{y}}^{(K)}_{t_n+\tau}(\omega));$$

2 Invoke Girsanov's theorem

$$\log \frac{\mathrm{d}\bar{p}|_{\mathcal{F}_{t_n}}}{\mathrm{d}q|_{\mathcal{F}_{t_n}}}(\omega) = -\int_0^{h_n} \boldsymbol{\delta}_{t_n}(\tau,\omega)^\top \mathrm{d}\boldsymbol{w}_{t_n+\tau}(\omega) - \frac{1}{2}\int_0^{h_n} \|\boldsymbol{\delta}_{t_n}(\tau,\omega)\|^2 \mathrm{d}\tau;$$

Proof Sketch

In *n*-th block, let $q|_{\mathcal{F}_{t_n}}$ be the measure shared by $\boldsymbol{w}_t(\omega)$ in the Picard iteration 1 Define $d\widetilde{\boldsymbol{w}}_{t_n+\tau}(\omega) = d\boldsymbol{w}_{t_n+\tau}(\omega) + \boldsymbol{\delta}_{t_n}(\tau,\omega)d\tau$, where

$$\boldsymbol{\delta}_{t_n}(\tau,\omega) := \boldsymbol{s}^{\theta}_{t_n+g_n(\tau)}(\widehat{\boldsymbol{y}}^{(K-1)}_{t_n,g_n(\tau)}(\omega)) - \nabla \log \bar{p}_{t_n+\tau}(\widehat{\boldsymbol{y}}^{(K)}_{t_n+\tau}(\omega));$$

Invoke Girsanov's theorem

$$\log \frac{\mathrm{d}\bar{p}|_{\mathcal{F}_{t_n}}}{\mathrm{d}q|_{\mathcal{F}_{t_n}}}(\omega) = -\int_0^{h_n} \boldsymbol{\delta}_{t_n}(\tau,\omega)^\top \mathrm{d}\boldsymbol{w}_{t_n+\tau}(\omega) - \frac{1}{2}\int_0^{h_n} \|\boldsymbol{\delta}_{t_n}(\tau,\omega)\|^2 \mathrm{d}\tau;$$

3 Conclude that $(\widetilde{w}_{t_n+ au})_{\tau\geq 0}$ is a Wiener process under $p|_{\mathcal{F}_{t_n}}$ and thus:

$$\mathrm{d}\widehat{\boldsymbol{y}}_{t_{n},\tau}^{(K)}(\omega) = \left[\frac{1}{2}\widehat{\boldsymbol{y}}_{t_{n},\tau}^{(K)}(\omega) + \nabla \log \overleftarrow{p}_{t_{n}+\tau}\left(\widehat{\boldsymbol{y}}_{t_{n},\tau}^{(K)}(\omega)\right)\right] \mathrm{d}\tau + \mathrm{d}\widetilde{\boldsymbol{w}}_{t_{n}+\tau}(\omega),$$

i.e. the true backward SDE with the true score function for $\tau \in [t_n, t_{n+1}]$.

Empirical Results

- > Picard iteration with adaptive window size [SBE+24]
- > Triangular Anderson acceleration [TTL+24]

Takeaways

Parallelized inference algorithm for both SDE and PF-ODE implementations

Empirical Results

- > Picard iteration with adaptive window size [SBE+24]
- > Triangular Anderson acceleration [TTL+24]

Takeaways

- Parallelized inference algorithm for both SDE and PF-ODE implementations
- Convergence analysis that achieves the first poly-logarithmic error bound for diffusion models with generalized Girsanov's theorem

Conclusion

Empirical Results

- > Picard iteration with adaptive window size [SBE+24]
- > Triangular Anderson acceleration [TTL+24]

Takeaways

- Parallelized inference algorithm for both SDE and PF-ODE implementations
- Convergence analysis that achieves the first poly-logarithmic error bound for diffusion models with generalized Girsanov's theorem
- > Improved space complexity for PF-ODE implementation with predictor-corrector from $\widetilde{\mathcal{O}}(d^2)$ to $\widetilde{\Theta}(d^{3/2})$

Thank you for your attention!

References I

- Nima Anari, Sinho Chewi, and Thuy-Duong Vuong, Fast parallel sampling under isoperimetry, arXiv preprint arXiv:2401.09016 (2024).
- Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis, Linear convergence bounds for diffusion models via stochastic localization, arXiv preprint arXiv:2308.03686 (2023).
- Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim, *The probability flow ode is provably fast*, Advances in Neural Information Processing Systems **36** (2024).
- Tim Dockhorn, Arash Vahdat, and Karsten Kreis, *Genie: Higher-order denoising diffusion solvers*, Advances in Neural Information Processing Systems **35** (2022), 30150–30166.
- Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine, *Elucidating the design space of diffusion-based generative models*, Advances in Neural Information Processing Systems **35** (2022), 26565–26577.

References II

- Gen Li, Yu Huang, Timofey Efimov, Yuting Wei, Yuejie Chi, and Yuxin Chen, Accelerating convergence of score-based diffusion models, provably, arXiv preprint arXiv:2403.03852 (2024).
- Eric Luhman and Troy Luhman, Knowledge distillation in iterative generative models for improved sampling speed, arXiv preprint arXiv:2101.02388 (2021).
- Cheng Lu and Yang Song, *Simplifying*, *stabilizing and scaling continuous-time consistency models*, arXiv preprint arXiv:2410.11081 (2024).
- Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans, On distillation of guided diffusion models, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 14297–14306.
- Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari, *Parallel sampling of diffusion models*, Advances in Neural Information Processing Systems **36** (2024).

References III

- Yang Song and Prafulla Dhariwal, *Improved techniques for training consistency models*, arXiv preprint arXiv:2310.14189 (2023).
- Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever, *Consistency models*, arXiv preprint arXiv:2303.01469 (2023).
- Jiaming Song, Chenlin Meng, and Stefano Ermon, *Denoising diffusion implicit models*, arXiv preprint arXiv:2010.02502 (2020).
- Zhiwei Tang, Jiasheng Tang, Hao Luo, Fan Wang, and Tsung-Hui Chang, Accelerating parallel sampling of diffusion models, arXiv preprint arXiv:2402.09970 (2024).
- Qinsheng Zhang and Yongxin Chen, Fast sampling of diffusion models with exponential integrator, arXiv preprint arXiv:2204.13902 (2022).
- Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar, Fast sampling of diffusion models via operator learning, International Conference on Machine Learning, PMLR, 2023, pp. 42390–42402.