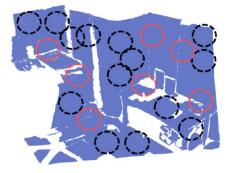


SAM-Guided Masked Token Prediction for 3D Scene Understanding

Zhimin Chen¹, Liang Yang², Yingwei Li³, Longlong Jing², Bing Li¹ Clemson University¹, The City University of New York², Johns Hopkins University³

- **Background**: Foundation models have advanced 3D task performance significantly.
- **Issues**: Limited alignment and long-tail distribution hinder 3D foundation model training.
- **Problematic**: How to align 2D and 3D features to improve 3D scene understanding.
- Idea: Use SAM-guided tokenization and a balanced re-weighting strategy for region-level distillation, combined with a two-stage masked token prediction framework.

Misalignment Problems

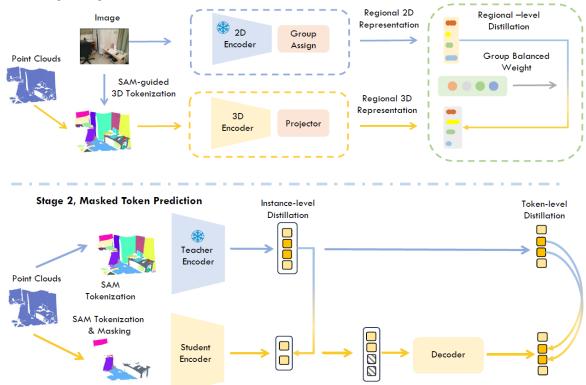


KNN-Based Tokenization

SAM Masks

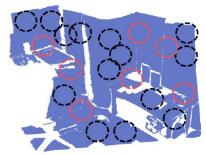
As shown in the red circle, the KNN-based method may inadvertently group points from different SAM regions into the same tokens, leading to potential confusion within the 3D network.

Framework



Stage 1, Region-level Dense Distillation

1, SAM-Guided Tokenization



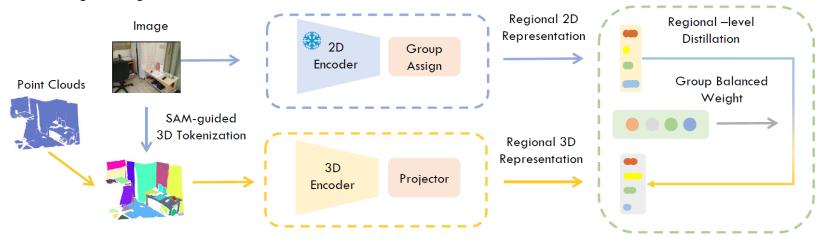
(a) Patch based 2D tokenization (method.

(b) KNN-based 3D tokenization method.

(c) Proposed SAM-guided 3D tokenization method.

Unlike previous methods leverage the KNN-based tokenization method, our method effectively employs SAM masks in tokenization to ensure seamless region-level knowledge distillation, thereby avoiding misalignment issues.

2, Stage 1



Stage 1, Region-level Dense Distillation

In the first stage, we input complete point clouds and leverage SAM masks to guide the point cloud tokenization, thereby seamlessly aligning the 2D and 3D region-level features for dense prediction. A group-balanced weight is applied during distillation to prevent bias towards the head representations.

2.1, Stage 1

Group Balanced Re-weighting

•**Challenge**: 3D datasets are inherently imbalanced, making traditional methods suboptimal for underrepresented (tail) classes.

Method:

1.Region Grouping: Apply SAM masks and use max pooling to obtain region-level features.

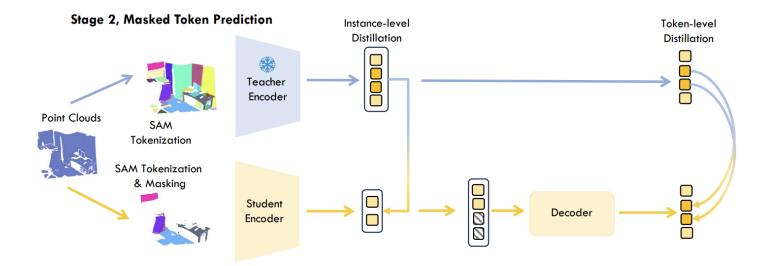
2.Clustering: Use K-means to assign features into K distinct groups (pseudo-labels).

3.Re-weighting Strategy:

- 1. Compute weights for each group to prioritize tail classes.
- 2. Adjust the loss to balance learning across head and tail regions.

4.Loss Function: Use a weighted L1 loss to enhance representation learning. **5.Outcome**: Balances representation learning, improving robustness on underrepresented regions.

3, Stage 2



In the second stage, we freeze the models trained in the first stage and have the student models predict instance-level features and masked tokens obtained from the teacher models.

Experiments

		SUN F	SUN RGB-D		ScanNetV2		
Methods	Pre-trained	AP_{25}	AP_{50}	AP_{25}	AP_{50}		
VoteNet [39]	None	57.7	32.9	58.6	33.5		
PointContrast [49]	\checkmark	57.5	34.5	59.2	38.0		
Hou et al. [26]	\checkmark	-	36.4	-	39.3		
4DContrast [9]	\checkmark	-	38.2	-	40.0		
DepthContrast [55]	\checkmark	61.6	35.5	64.0	42.9		
DPCo [30]	\checkmark	60.2	35.5	64.2	41.5		
3DETR [35]	None	58.0	30.3	62.1	37.9		
+Plain Transformer	None	57.6	31.9	61.1	38.6		
+Point-BERT[51]	-	-	-	61.0	38.3		
+Point-MAE [37]	\checkmark	-	-	63.4	40.6		
+MaskPoint [31]	\checkmark	-	-	63.4	40.6		
+ACT [15]	\checkmark	-	-	63.5	41.0		
+PiMAE [7]	\checkmark	59.9	33.7	63.0	40.2		
+Bridge3D [10]	\checkmark	61.8	37.1	65.3	44.2		
+Ours	\checkmark	63.5(+1.7)	39.5(+2.4)	68.2 (+2.9)	48.4(+4.2)		
GroupFree3D [33]	None	63.0	45.2	67.3	48.9		
+Plain Transformer	None	62.2	45.0	66.1	48.3		
+Point-MAE [37]	\checkmark	63.9	46.1	67.4	49.8		
+PiMAE [7]	\checkmark	65.0	46.8	67.9	50.5		
+Bridge3D [10]	\checkmark	67.9	48.5	69.1	51.9		
+Ours	\checkmark	68.9(+1.0)	52.1(+3.6)	72.3(+3.2)	55.7(+3.8)		

3D object detection results on ScanNet and SUN RGB-D dataset.

Experiments

		S3DIS		ScanNetV2	
Methods	Pre-trained	mIoU	mAcc	mIoU	mAcc
SR-UNet [49]	None	68.2	75.5	72.1	80.7
PointContrast [49]	\checkmark	70.9	77.0	74.1	81.6
DepthContrast [55]	\checkmark	70.6	-	73.1	-
Hou et al. [26]	\checkmark	72.2	-	73.8	-
Standard Transformer [51]	None	60.0	68.6	-	-
PointBert [51]	\checkmark	60.8	69.9	-	-
PViT [40]	None	64.4	69.9	-	-
PViT+Pix4Point [40]	\checkmark	69.6	75.2	-	-
Plain Transformer	None	61.1	67.2	67.3	73.1
+Point-MAE [37]	\checkmark	64.8	70.2	-	-
+Bridge3D [10]	\checkmark	70.2	76.1	73.9	80.2
+Ours	\checkmark	71.8 (+1.6)	78.2(+2.1)	75.4(+1.5)	81.5(+1.3

3D semantic segmentation results on S3DIS dataset and ScanNet

Ablation Study

Dense Distillation	Masked Token Prediction	Balanced Re-weight	SAM-Guided Tokenzie	$Scan Market AP_{25}$	NetV2 AP_{50}	S3I mIoU	DIS mAcc
				61.1 62.4	38.6 41.7	61.1 66.2	67.2 71.3
\checkmark	\checkmark			64.5	44.3	68.7	74.1
\checkmark	\checkmark	\checkmark	\checkmark	66.0 67.1	46.1 47.0	69.7 70.9	75.9 77.0
✓	\checkmark	\checkmark	\checkmark	68.2	48.4	71.8	78.2

Ablation study on the effectiveness of each component on 3D object detection and semantic segmentation tasks.

Conclusion

1, We introduce a novel two-stage SAM-guided masked token prediction framework that leverages foundation models for 3D scene understanding.

2, We present a group-balanced re-weighting method for long-tail representation distillation and a SAM-guided tokenization method to seamlessly align 2D and 3D region-level features.

3. Extensive experiments have been conducted to demonstrate the significance of our approach in various 3D downstream tasks.