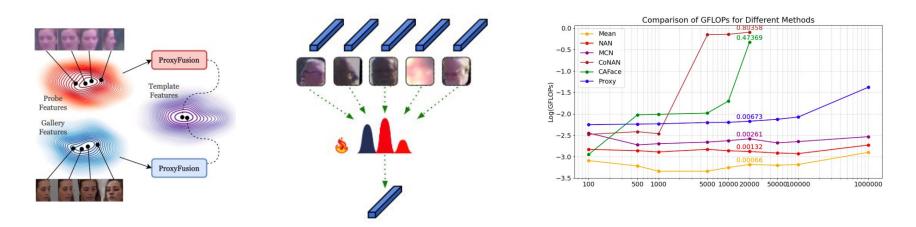


ProxyFusion

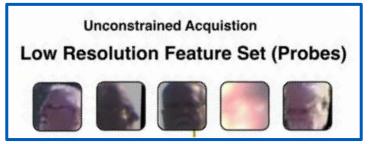
Face Feature Aggregation Through Sparse Experts NeurIPS 2024

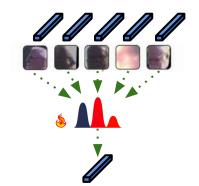


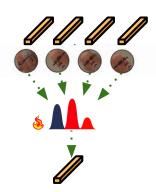
Bhavin Jawade, Alexander Stone, Deen Dayal Mohan, Xiao Wang, Srirangaraj Setlur, Venu Govindaraju Center for Unified Biometrics and Sensors, University at Buffalo

Face Feature Aggregation

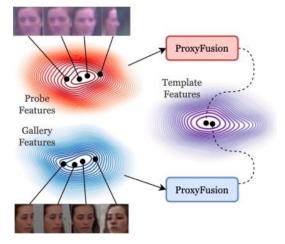
Given a bunch of face features, how do you decide effective weightages (informativeness) to fuse these features for robust long range face recognition?

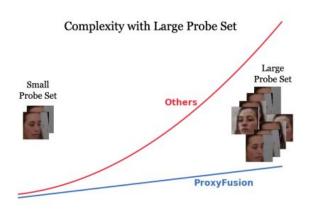






ProxyFusion



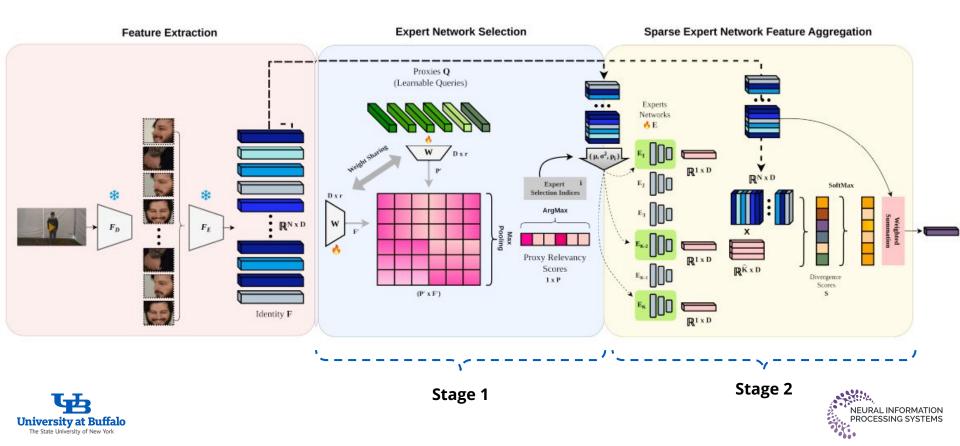


Cross-Distribution Matching

Compatibility To Legacy Templates

Time Complexity

Proposed Architecture

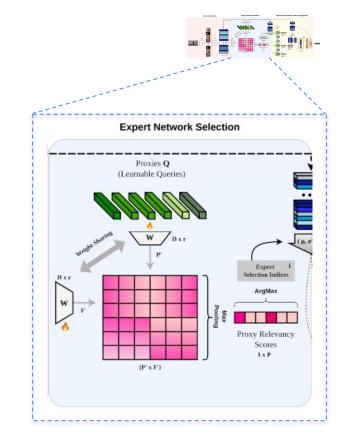


Expert Network Selection

- Learnable proxies for latent facial attributes
- Proxy relevancy scores to sparsely activate expert networks

$$r_j = \sum_{i=1}^N ig(p_j' \cdot f_i' ig)$$

- Compute **Top-K** Indices using proxy relevance scores
- Activate the relevant experts



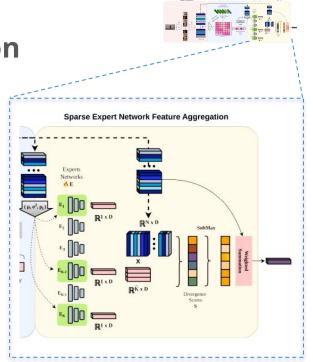
Sparse Expert Network Feature Aggregation

- Aggregation through selected experts
- Experts conditioned on of **mean**, **variance**, **and proxies**

$$\boldsymbol{\mu} = rac{1}{N} \sum_{i=1}^{N} \mathbf{f}_i, \quad \boldsymbol{\sigma}^2 = rac{1}{N} \sum_{i=1}^{N} (\mathbf{f}_i - \boldsymbol{\mu})^2 \qquad \mathbf{x}_j = \left[\boldsymbol{\mu} \bigoplus \boldsymbol{\sigma}^2 \bigoplus \mathbf{p}_j
ight]$$

- The outputs of the expert networks **set-centers**
- For each feature *f* in the feature set, compute the **divergence score** relative to each set center:

$$a_{ij} = rac{\exp(\mathbf{c}_j \cdot \mathbf{f}_i)}{\sum_{k=1}^N \exp(\mathbf{c}_j \cdot \mathbf{f}_k)}$$



Sparse Expert Network Feature Aggregation

• Experts conditioned on mean, variance, and proxies

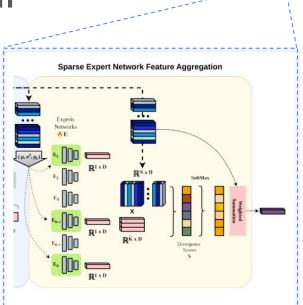
$$\boldsymbol{\mu} = rac{1}{N} \sum_{i=1}^{N} \mathbf{f}_i, \quad \boldsymbol{\sigma}^2 = rac{1}{N} \sum_{i=1}^{N} (\mathbf{f}_i - \boldsymbol{\mu})^2 \quad \mathbf{x}_j = \left[\boldsymbol{\mu} \bigoplus \boldsymbol{\sigma}^2 \bigoplus \mathbf{p}_j \right]$$

- The outputs of the expert networks set-centers
- For each feature *f* in the feature set, compute the divergence score relative to each set center:

$$a_{ij} = rac{\exp(\mathbf{c}_j \cdot \mathbf{f}_i)}{\sum_{k=1}^N \exp(\mathbf{c}_j \cdot \mathbf{f}_k)}$$

• Using the divergence scores, compute the **weighted sum** of the feature vectors for each expert:

$$\mathbf{s}_j = \sum_{i=1}^N a_{ij} \mathbf{f}_i$$



Sparse Expert Network Feature Aggregation

• Experts conditioned on mean, variance, and proxies

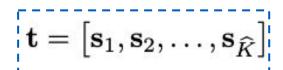
$$\boldsymbol{\mu} = rac{1}{N} \sum_{i=1}^{N} \mathbf{f}_i, \quad \boldsymbol{\sigma}^2 = rac{1}{N} \sum_{i=1}^{N} (\mathbf{f}_i - \boldsymbol{\mu})^2 \quad \mathbf{x}_j = \left[\boldsymbol{\mu} \bigoplus \boldsymbol{\sigma}^2 \bigoplus \mathbf{p}_j \right]$$

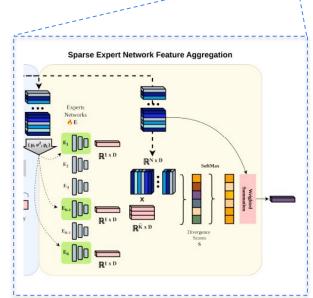
- The outputs of the expert networks set-centers
- For each feature *f* in the feature set, compute the divergence score relative to each set center:

$$a_{ij} = rac{\exp(\mathbf{c}_j \cdot \mathbf{f}_i)}{\sum_{k=1}^N \exp(\mathbf{c}_j \cdot \mathbf{f}_k)}$$

• Using the divergence scores, compute the weighted sum of the feature vectors for each expert:

$$\mathbf{s}_j = \sum_{i=1}^N a_{ij} \mathbf{f}_i$$





Optimization

• Supervised contrastive loss for identity matching

$$\mathcal{L}_{\mathsf{id}} = \sum_{i \in \mathcal{B}} \frac{-1}{|\mathcal{P}(i)|} \sum_{p \in \mathcal{P}(i)} \ln \frac{\exp(\mathbf{t}_i \cdot \mathbf{t}_p^\top / \tau)}{\sum_{j \in \mathcal{A}(i)} \exp(\mathbf{t}_i \cdot \mathbf{t}_j / \tau)}$$

- **Proxy loss** for decorrelation and diversity
 - K uniformly spaced equidistant vectors on the unit hypersphere

$$\mathbf{v}_{i} = \left(\mathbf{e}_{i} - \frac{1}{d} \sum_{j=1}^{d} \mathbf{e}_{j}\right) \sqrt{\frac{d}{d-1}},$$

$$L_{\text{Proxy}} = \frac{1}{K} \sum_{i=1}^{K} \left[\ln\left(1 + \exp\left(-\alpha(s_{ii} - \lambda)\right)\right) + \frac{1}{|K-1|} \sum_{\substack{k \in K \\ k \neq i}} \ln\left(1 + \exp\left(\beta(s_{ik} - \lambda)\right)\right) \right] \qquad \qquad \mathcal{L} = \mathcal{L}_{\text{ID}} + \gamma \cdot \mathcal{L}_{\text{Proxy}},$$

A

Datasets

Training:

- 1. BRIAR Research Set 3 (BRS 3)
- 2. WebFace 4M

Evaluation:

- 1. BTS 3.1
- 2. DroneSURF

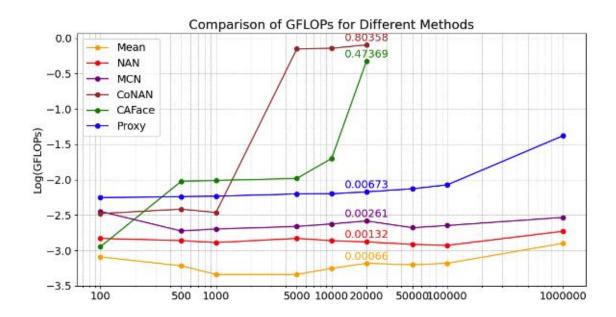
Dataset	Subjects/Identities	Media					
BRS 3	170	49,429 clips/images: - 20,780 field clips					
WebFace 4M	10,000	813,482 images					
BTS 3.1	260 (treatment) 256 (control)	- 5,822 treatment probe videos - 1,914 control probe videos					
DroneSURF	58 (34 training/validation, 24 test)	200 videos, 411,000 frames, 786,000+ face annotations					

Comparison To SoTA

Verification Performance (TAR (%) @FAR=%) for face included treatment and control protocols of the BTS 3.1 dataset.

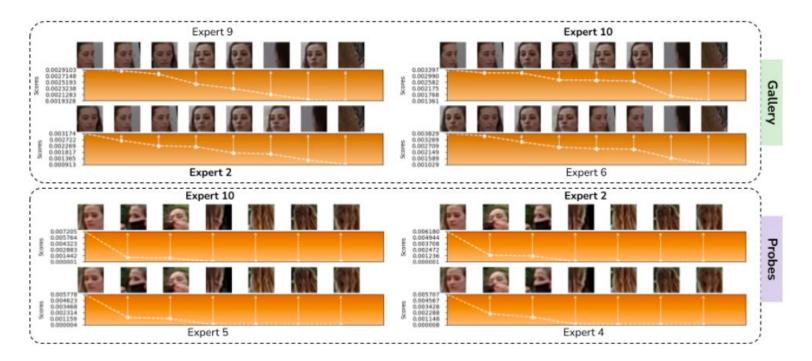
			Face Included Treatment							
	Feature	Dataset	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-1}	10^{-2}	10^{-3}	10^{-4}
GAP [11]	Adaface [8]	Briar	76.6	58.4	43.3	32.1	98.5	94.6	88.9	81.2
NAN [20]	Adaface [8]	Briar	78.5	61.2	46.8	33.4	98.5	95.3	89.3	84.8
MCN [19]	Adaface [8]	Briar	79.4	62.9	47.3	35.9	98.5	95.9	90.7	85.7
CoNAN [5]	Adaface [8]	Briar	81.3	64.3	49.6	36.8	98.6	96.2	91.8	86.1
ProxyFusion	Adaface [8]	Briar	83.7	68.9	53.9	40.1	98.6	96.8	92.7	88.3

Inference Time



Time complexity comparison of ProxyFusion approach against SoTA. On the Y-axis we plot the Log of GFLOPs with base 10, and X axis is the number of features in the feature set N

Visualizing Learned Weights



More Information

Codebase is available at: <u>https://github.com/bhavinjawade/ProxyFusion</u>

Project Page: <u>https://bhavinjawade.github.io/proxyfusion_ub/</u>

Reach out to:

Bhavin Jawade PhD Candidate @ University at Buffalo bhavinja@buffalo.edu

