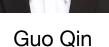
AutoTimes: Exploring LLM's Potentials for TSF

AutoTimes: Autoregressive Time Series Forecasters via Large Language Models

Yong Liu^{*1} Guo Qin^{*1} Xiangdong Huang¹ Jianmin Wang¹ Mingsheng Long¹

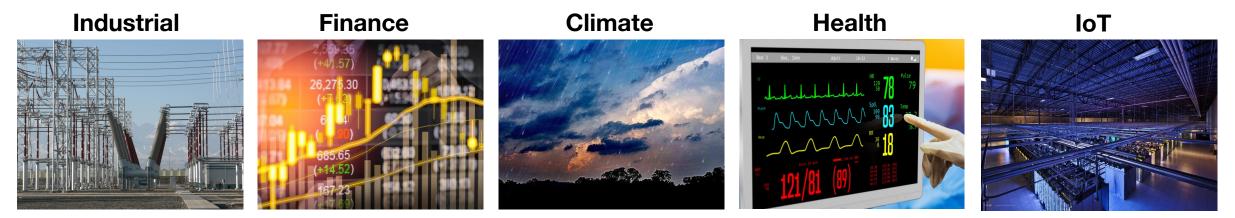


Xiangdon Huang

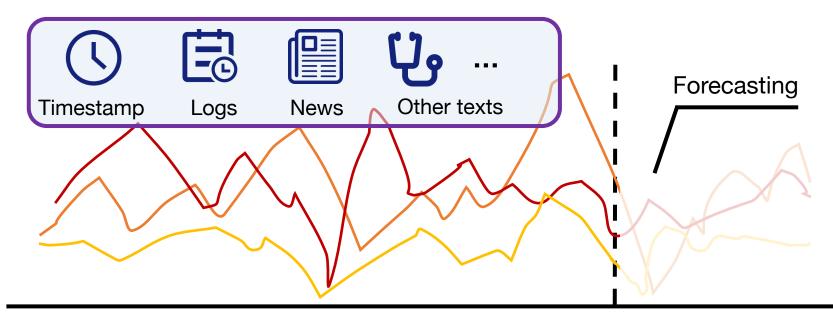
Jianmin Wang

Mingsheng Long

Text-Informed Time Series Forecasting



Time series and natural language always go together

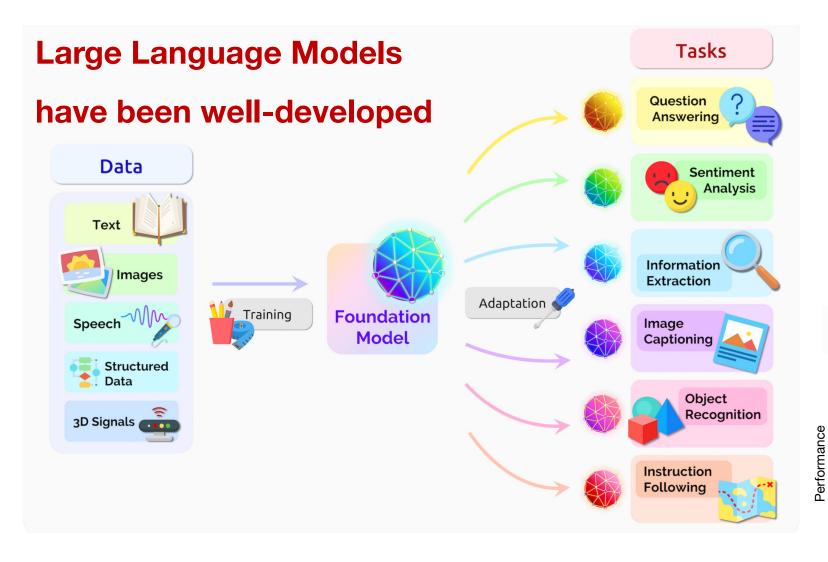


- Process description

. . .

- Semantic token/variation
- Generative formulations

Foundation Models



Bommasani et al. On the Opportunities and Risks of Foundation Models. arXiv 2021.

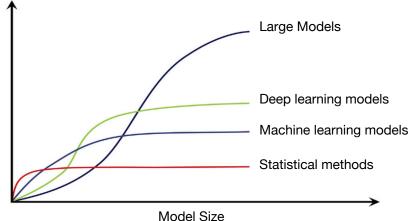
🙂 [Data General]

Learn from diverse modalities

🙂 [Task Universal]

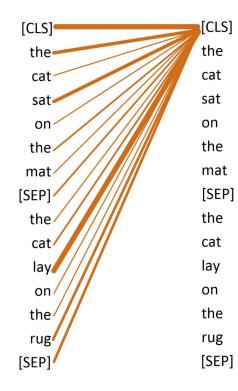
Adapt to diverse scenarios

Scalable Backbone]



LLMs for Time Series: Motivations

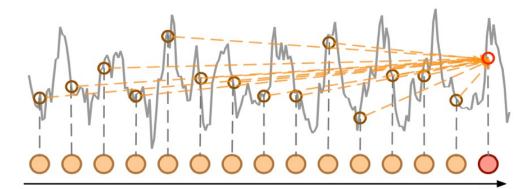
Align time series and natural language



Language modeling (Bengio et al., 2000):

- $P(\mathcal{U}) = \prod_{i=1}^{N} p(u_i | u_{< i})$
- Time series forecasting:

$$P(\mathbf{x}_{L+1:L+F}|\mathbf{x}_{1:L}), \mathbf{x} \in \mathbb{R}^C$$



Dependencies of time points

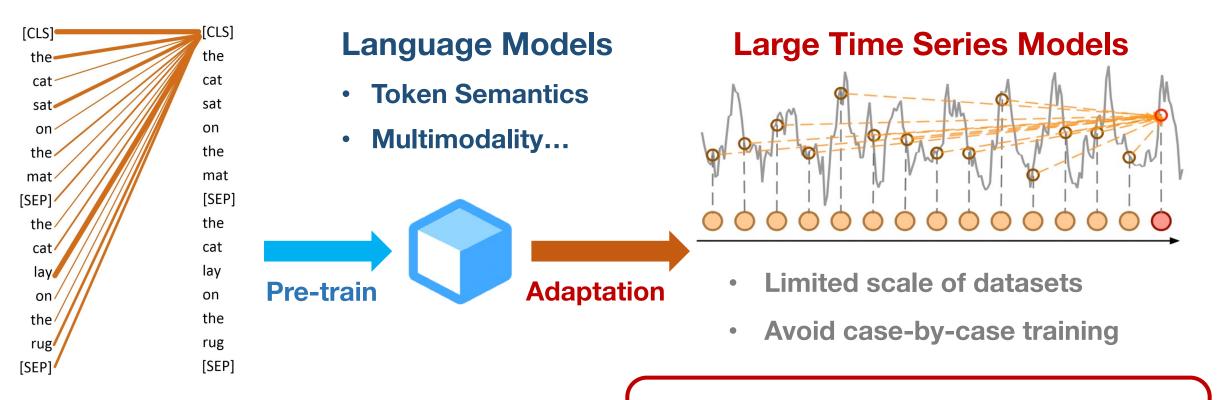
Dependencies of language tokens

Goal of LLM4TS: Leverage off-the-shelf

LLMs as foundation models for time series

LLMs for Time Series: Motivations

Align time series and natural language



- Large-scale text corpora
- Scalable and versatile architecture

Goal of LLM4TS: Leverage off-the-shelf

LLMs as foundation models for time series

Insufficient Utilization of Language Models

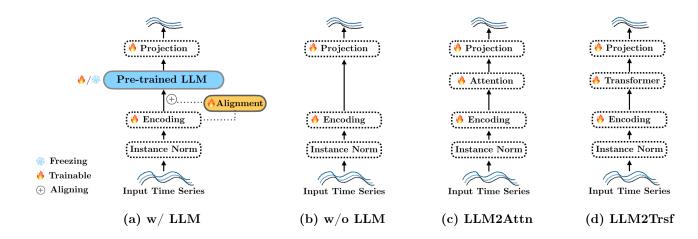
Are Language Models Actually Useful for **Time Series Forecasting?**

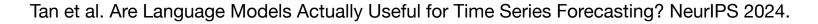
Mingtian Tan Mike A. Merrill University of Virginia University of Washington University of Washington mikeam@cs.washington.edu vinayak@cs.washington.edu wtd3gz@virginia.edu

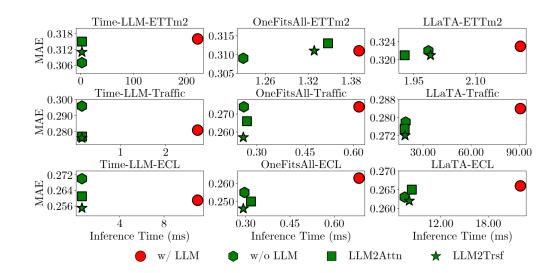
> Tim Althoff University of Washington althoff@cs.washington

Thomas Hartvigsen University of Virginia hartvigsen@virginia.edu

Vinayak Gupta







High adaptation cost (7B+

Params. In a LLM)

X Results are still good

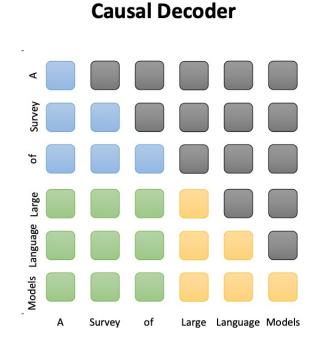
without LLMs

Patch + Project is already X

a simple & effective choice

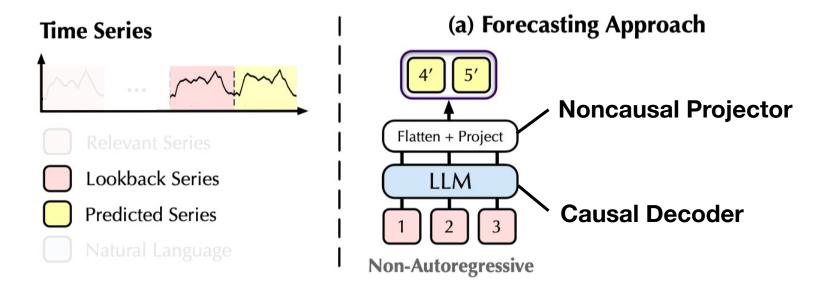
Rethinking Previous LLM4TS Methods

Insufficient utilization of LLMs is caused by several inconsistencies



Casual mask inside each LLM block

X Architecture: Previous works adapt LLMs, which are GPT-style causal decoders, as encoder-only models in a BERT-style



ᢙ The token causality are broken in the last projector

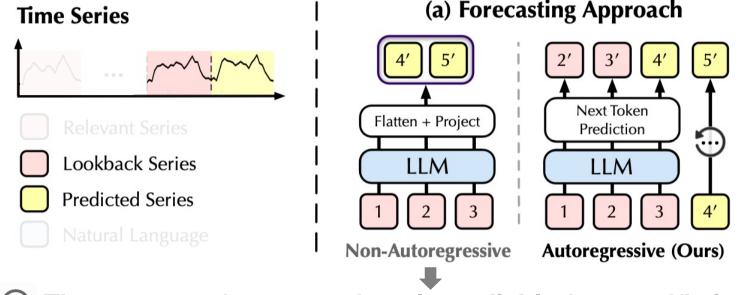
Rethinking Previous LLM4TS Methods

Insufficient utilization of LLMs is caused by several inconsistencies

$$P(\mathcal{U}) = \prod_{i=1}^{N} p(u_i | u_{< i})$$

Multiple supervision under different lengths

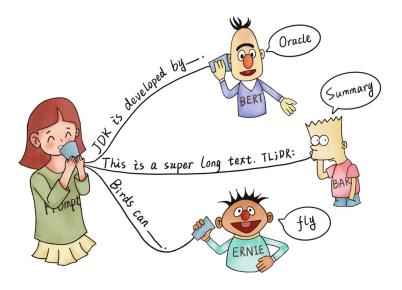
Inference with different lengths of input tokens X Autoregression: LLM predicts the next tokens iteratively, while prevalent forecasters obtain all tokens in one step



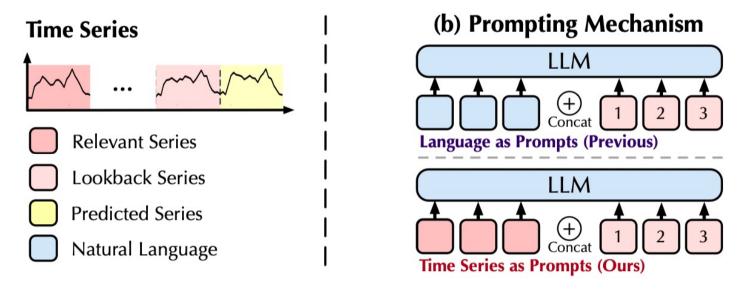
The outcome forecaster is only available for specific length

Revitalize LLMs for Time Series Modality

Exploration of advanced capabilities of language models



Prompts aim to elicit better responses from large models • **Prompting:** we formulate time series as prompts, extending the context for prediction beyond the lookback window



Language prompts for TSF lead to modality gap

Liu et al. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM 2023.

Revitalize LLMs for Time Series Modality

Exploration of advanced capabilities of language models

The Electricity Transformer Temperature (ETT) indicates the electric power long-term deployment. Each data point consists of the target oil temperature and 6 power load features ... Below is the information about the input time series:

[BEGIN DATA]

[Domain]: We usually observe that electricity consumption
peaks at noon, with a significant increase in transformer load

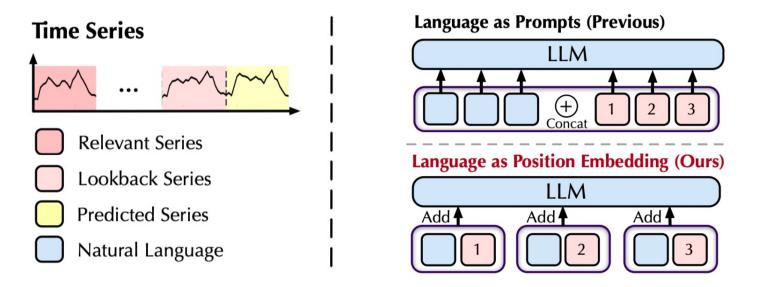
[Instruction]: Predict the next <H> steps given the previous
<T> steps information attached

[Statistics]: The input has a minimum of <min_val>, a maximum
of <max_val>, and a median of <median_val>. The overall trend
is <upward or downward>. The top five lags are <lag_val>.
[END DATA]

Delicate and long prompts

designed for time series

• **Multimodal:** we use LLM-embedded textual timestamps to utilize chronological information and align multivariate series

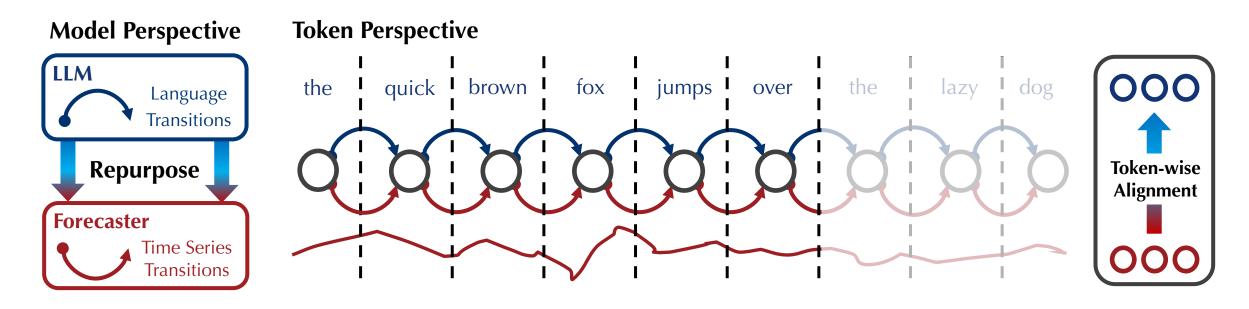


Language prompts for TSF lead to excessive contexts

Jin et al. Time-LLM: Time Series Forecasting by Reprogramming Large Language Models. ICLR 2024.

Key Idea

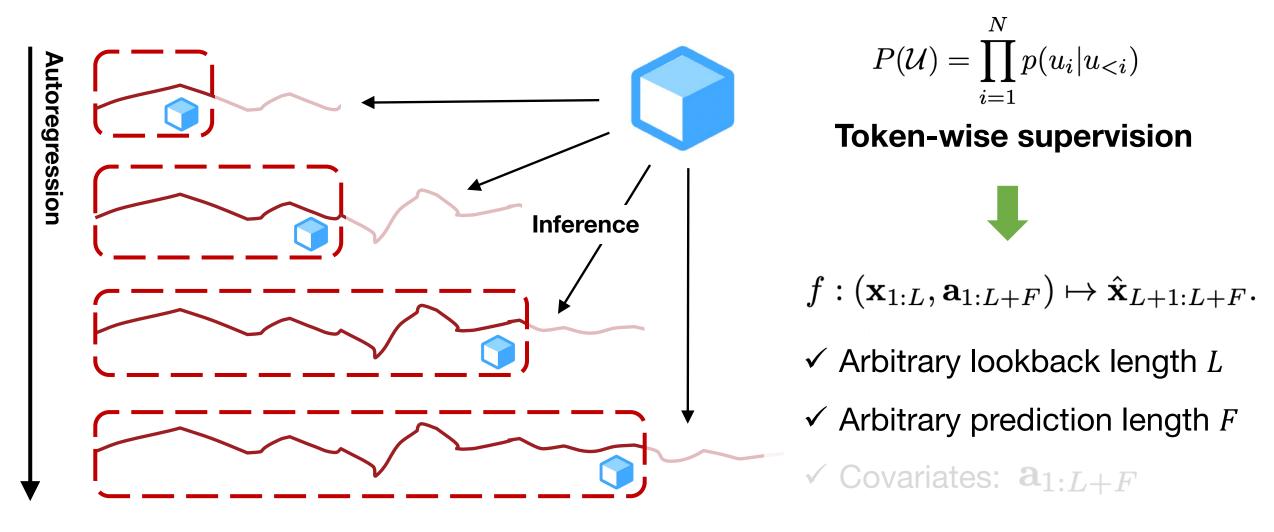
Language token transitions are general-purpose and transferable



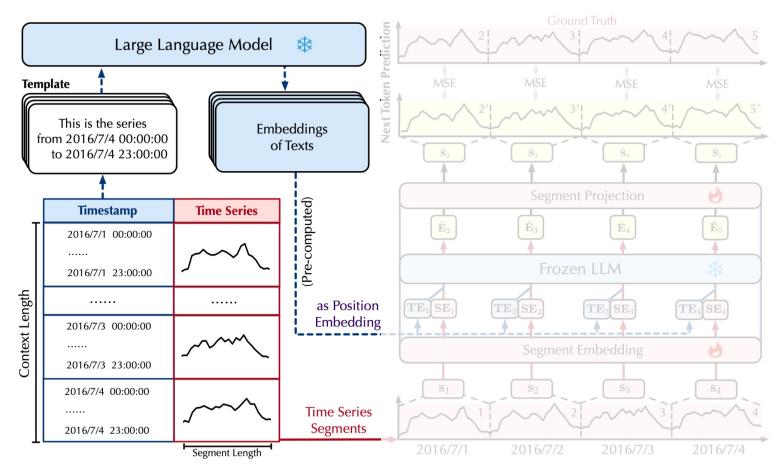
- ✓ Approach: Reuse the general-purpose token transition
- ✓ Alignment: Embed time series into latent language representations
- ✓ **Potentials:** Autoregressive generation with inherited LLM capabilities

Key Idea

Autoregressive LLMs are arbitrary-length time series forecasters



Method Pipeline



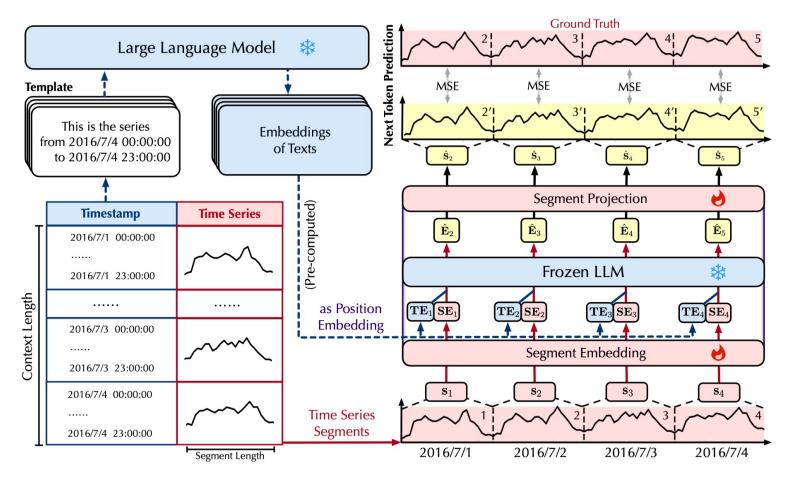
Tokenization: regard time series segments as basic language tokens

Modality-Mixing: Incorporate textual covariates (timestamp) to align variates

Freeze the LLM: Train minimal parameters by next token prediction

Inference: Generate arbitrary-length time series autoregressively like LLMs

Method Pipeline



Tokenization: regard time series segments as basic language tokens

Modality-Mixing: Incorporate textual covariates (timestamp) to align variates

Freeze the LLM: Train minimal parameters by next token prediction

Inference: Generate arbitrary-length time series autoregressively like LLMs

In-Context Learning

How many marbles does Sam have left?

Answer the following mathematical reasoning questions:

Q:

If you have 12 candies and you give 4 candies to your friend, how many candies do you have left?

A:

The answer is 8.

Q:

If a rectangle has a length of 6 cm and a width of 3 cm, what is the perimeter of the rectangle?

A:

The answer is 18 cm.

Q:
Sam has 12 marbles. He gives 1/4 of them to his sister.

In-Context Learning: LLM can generate desired outputs based on task demonstrations from downstream datasets, without gradient updating

> A: He gives $(1 / 4) \ge 12 = 3$ marbles. So Sam is left with 12 - 3 = 9 marbles.

The answer is 9.

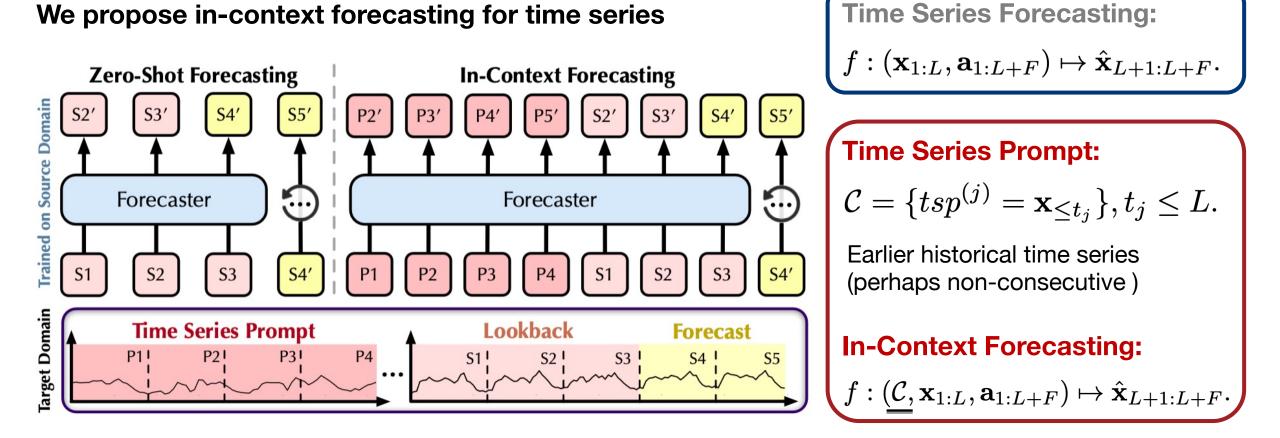
Task Demonstrations: Question-answer pairs in natural language, from an unseen task

Inference: Combine the current question with task demonstrations (prompt) as the input

Based on the token-wise alignment and full reutilization of token transition,

AutoTimes can seamlessly transfer ICL to the time series modality

In-Context Forecasting



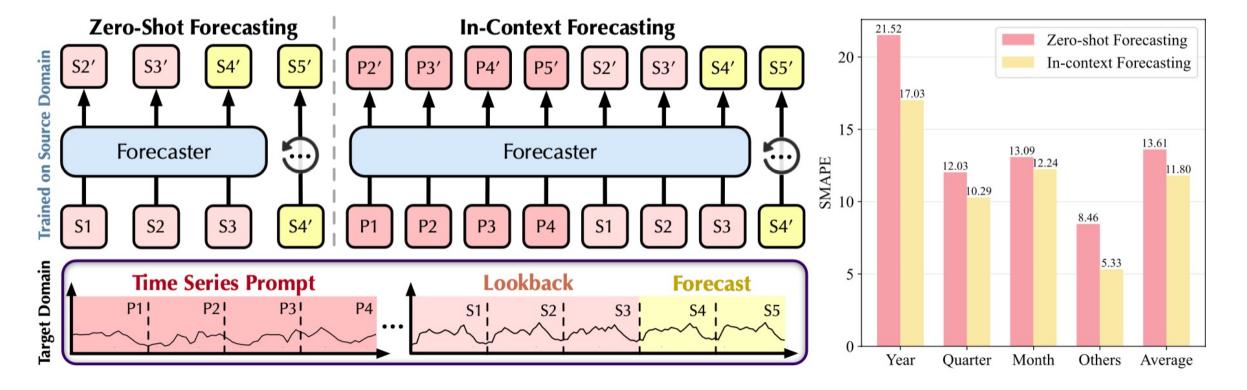
Prediction Demonstrations: Retrieve time series as prompts from the target domain

Inference: Input "prompt-lookback" sentence into our model without updating parameters

In-Context Forecasting

We propose in-context forecasting for time series

Enhanced performance with prompts



Prediction Demonstrations: Retrieve time series as prompts from the target domain

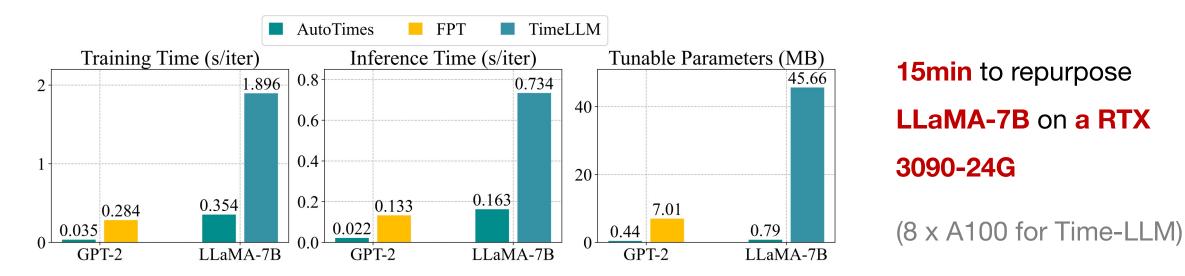
Inference: Input "prompt-lookback" sentence into our model without updating parameters

Comparison of LLM4TS

Quality assessments (none of prior LLM4TS methods achieved all three)

Method	AutoTimes	TimeLLM [15]	UniTime [21]	FPT [49]	LLMTime [13]	TEST [34]	TEMPO [7]	PromptCast [44]
Autoregressive	1	X	×	X	1	X	×	X
Freeze LLM	1	1	×	X	1	1	X	✓
Multimodal	1	1	\checkmark	×	×	✓	✓	1

Minimal tunable parameters -> Better performance/model efficiency



Ablation Study

True utilization of large language model (different from non-autoregressive LLM4TS methods)

Table 6: We follow the protocol of LLM4TS ablation studies [35] to verify whether the LLM is truly useful in our AutoTimes: (1) *w/o LLM* replaces the language model entirely and passing input tokens directly to the last layer; (2) *LLM2Attn* replaces the language model with a single multi-head attention layer; (3) *LLM2Trsf* replaces the language model with a single transformer block.

Dataset		ETTh1							ECL							10
Туре	Auto	Fimes	w/o]	LLM	LLM	2Attn	LLM	2Trsf	Auto	Fimes	w/o]	LLM	LLM	2Attn	LLM	2Trsf
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE								
Pred-96	0.360	0.400	0.365	0.399	0.383	0.404	0.377	0.401	0.129	0.225	0.171	0.263	0.156	0.255	0.162	0.263
Pred-192	0.388	0.419	0.405	0.425	0.414	0.422	0.406	0.420	0.147	0.241	0.192	0.282	0.178	0.276	0.189	0.287
Pred-336	0.401	0.429	0.429	0.441	0.431	0.432	0.421	0.431	0.162	0.258	0.216	0.304	0.198	0.295	0.216	0.309
Pred-720	0.406	0.440	0.450	0.468	0.456	0.454	0.449	0.452	0.199	0.288	0.264	0.342	0.230	0.320	0.258	0.340

Tan et al. Are Language Models Actually Useful for Time Series Forecasting? NeurIPS 2024.

Forecasting Performance

Long-term forecasting (one-for-all rolling forecasting)

Models	Auto	limes	TimeLl	LM [15]	UniTin	ne [21]	FPT	[48]	iTran	s. [22]	DLine	ar [44]	PatchT	ST [26]	TimesN	Net [41]
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	0.389	0.422	0.412	0.437	0.683	0.596	0.429	0.439	0.421	0.445	0.426	0.444	<u>0.409</u>	<u>0.430</u>	0.495	0.491
ECL	0.159	0.253	0.181	0.288	0.325	0.399	0.184	0.284	<u>0.164</u>	<u>0.258</u>	0.165	0.265	0.169	0.268	0.201	0.303
Weather	0.235	0.273	0.225	0.266	0.461	0.459	0.228	0.266	0.266	0.291	0.239	0.291	<u>0.226</u>	<u>0.268</u>	0.264	0.293
Traffic	0.374	0.264	0.410	0.303	0.584	0.367	0.461	0.326	0.384	<u>0.274</u>	0.423	0.298	0.391	0.275	0.602	0.322
Solar.	0.197	0.242	0.263	0.335	0.392	0.462	0.236	0.303	0.213	0.291	0.222	0.283	0.202	<u>0.269</u>	0.213	0.295

One LLM-forecasters can outperform each deep models trained on specific lengths

Short-term forecasting (in-distribution)

	AutoTimes			-						
Beland MASE Verage MASE OWA	11.831 1.585 0.850	11.983 <u>1.595</u> 0.859	11.991 1.600 0.861	$\frac{\underline{11.863}}{\underline{1.595}}\\0.858}$	11.960 1.606 0.861	12.418 1.656 0.891	13.022 1.814 0.954	11.930 1.597 0.867	12.489 1.690 0.902	11.910 1.613 0.862

Zero-shot forecasting (out-of-distribution)

							FEDFormer		
$M4 \rightarrow M3$	12.75	<u>13.06</u>	14.03	13.06	14.17	15.29	13.53	15.82	13.37
$M3 \rightarrow M4$	13.036	<u>13.125</u>	15.337	13.228	14.553	14.327	15.047	19.047	14.092

State-of-the-art performance

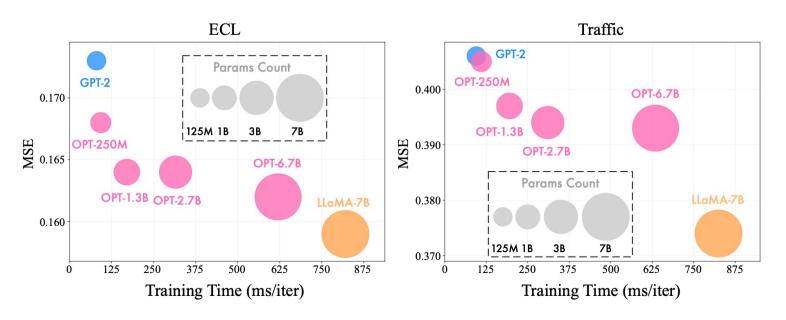
Compatibility of Language Models

AutoTimes configuration

Base LLM	GPT-2 (124M)	OPT-350M	OPT-1.3B	OPT-2.7B	OPT-6.7B	LLaMA-7B
Hidden Dim.	768	1024	2048	2560	4096	4096
Embedding	2-layer MLP	2-layer MLP	2-layer MLP	2-layer MLP	2-layer MLP	Linear
Trainable Param. (M)	0.44	0.58	1.10	1.36	2.15	0.79

Large model tuned with small amount of params

Scaling law of LLM-forecasters

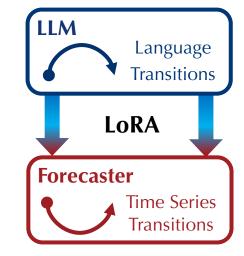


Larger language models, more accurate predictions

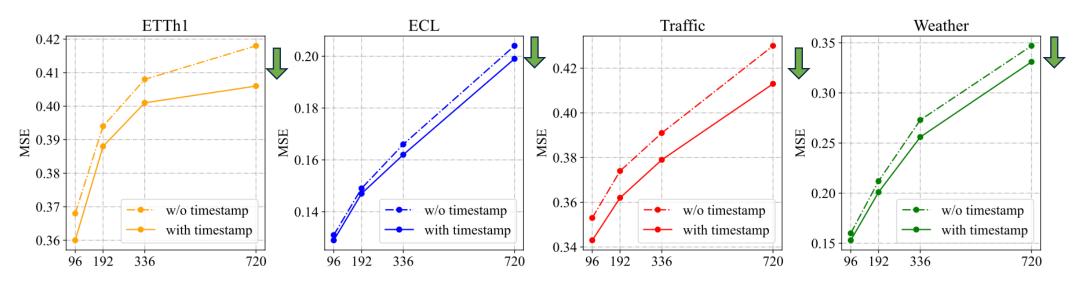
Method Analysis

Adopting low-rank adaptation can achieves better predictions

Datasets	ETTh1		E	ECL		Weather		Traffic		Solar-Energy	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
AutoTimes	0.397	0.425	0.173	0.266	0.242	0.278	0.406	0.276	0.207	0.246	
AutoTimes + LoRA	0.396	0.425	0.161	0.255	0.231	0.268	0.396	0.275	0.201	0.243	

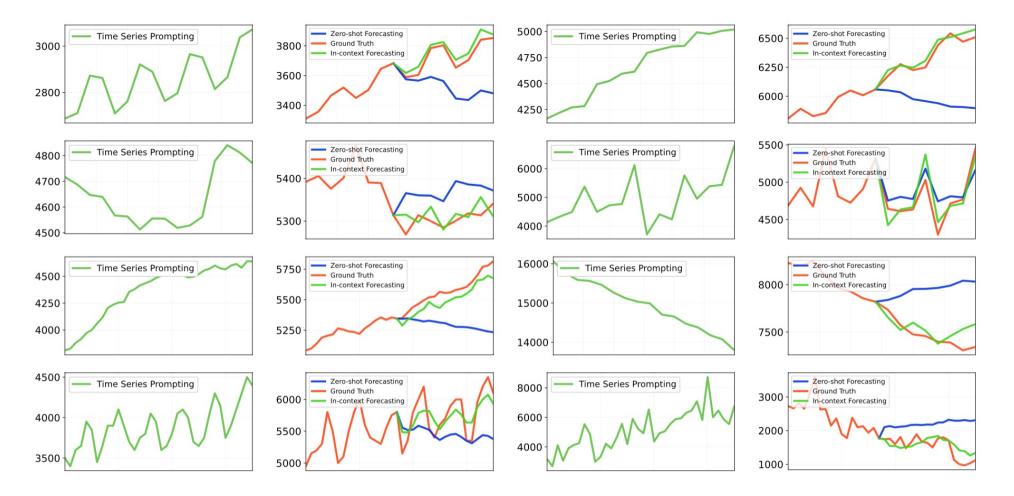


Textual Timestamps as position embeddings are effective



In-Context Forecasting Showcases

Facilitate an interactive experience of forecasting via prediction samples



In-Context Forecasting Showcases

Facilitate an interactive experience of forecasting via prediction samples

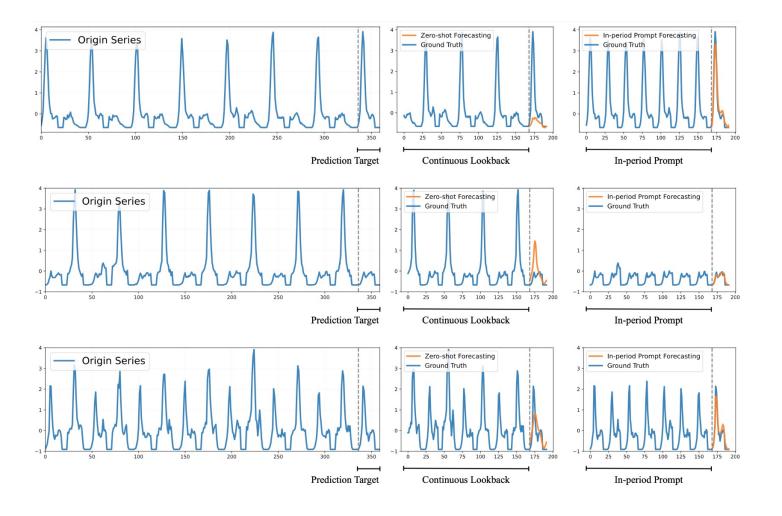
Context for prediction	ETTh1-OT	ETTh2-OT	ETTm1-OT	ETTm2-OT	Average Err.
P.0 : Zero-Shot (Input-288))	0.0673	0.1637	0.0424	0.1669	0.1101
P.1: Zero-Shot (Input-672)	0.0657	0.1538	0.0415	0.1701	0.1078
P.2: Ahead-Period (Input-672)	0.0645	0.1513	0.0399	0.1629	0.1047
P.3: Ahead-Random (Input-672)	0.0666	0.1621	0.0407	0.1719	0.1103
P.4: Fixed Prompt (Input-672)	0.0769	0.1859	0.0512	0.2104	0.1311
P.5: Other-Variates (Input-672)	0.1263	0.1780	0.0852	0.2297	0.1548

Table 20: Strategies to select time series prompts based on periodicity for in-context forecasting.

- Ahead-Period: select the Ahead-24 (daily period) series of the original lookback series
- Ahead-Random: randomly select the previous series of the original lookback series
- **Fixed Prompt:** fixed as the first 384 time points from the same variate
- Other Variate: uniformly selected as Ahead-24 series, but comes from other variate

In-Context Forecasting Showcases

Facilitate an interactive experience of forecasting via prediction samples



Compared with simply extending lookback length, in-context forecasting aims to improve context efficiency

Take-away message: utilize inter-periodic, consecutive, and relevant prompts

Open Source

- ✓ Efficient: Only 15min to repurpose LLaMA-7B on one single RTX 3090-24G (8 x A100 for Time-LLM)
- ✓ Compatible: Support any decoder-only LLMs:
 GPT, LLaMA of different sizes, the OPT family...
- Well-organized: Pretty code implementations for multi-step autoregressive forecasting and incontext forecasting

GitHub: https://github.com/thuml/AutoTimes

README MIT license

⊘ :≡

AutoTimes (Large Language Models for Time Series Forecasting)

The repo is the official implementation: <u>AutoTimes: Autoregressive Time Series Forecasters via</u> Large Language Models.

Time Series Forecasting: AutoTimes repurpose LLMs as autoregressive multivariate time series forecasters. Different from previous models, our repurposed forecaster can be applied on various lookback/forecast lengths.

Zero-Shot Forecasting: AutoTimes takes advantage of LLM's general-purposed token transition as the future extrapolation of time series, demonstrating good performance without downstream samples.

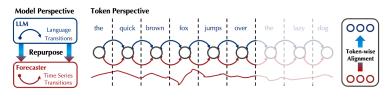
In-Context Forecasting: We propose in-context forecasting for the first time, where time series prompts can further incorporated into the context to enhance forecasting.

Easy-to-Use: AutoTimes is compatiable with any decoder-only large language models, demonstrating generality and proper scaling behavior.

Updates

News (2024.10): AutoTimes has been accepted by NeurIPS 2024. <u>A revised version</u> (25 Pages) is now available, including prompt engineering of in-context forecasting, adaptation cost evaluations, textual embeddings of metadata, and low-rank adaptation techique.

News (2024.08): <u>Recent work (code)</u> has also raised questions about previous nonautoregressive LLM4TS methods. We conduct ablations <u>here</u>, highlighting AutoTimes can truly utilize LLMs. Instead of adopting LLMs in a BERT-style, the general-purpose token transition is transferable among time series and natural language.



News (2024.2) Scripts for the above tasks in our paper are all available.

Thank You!

Yong Liu

https://wenweithu.github.io/

GitHub: https://github.com/thuml/AutoTimes