
Generalized Linear Bandits with Limited Adaptivity
Ayush Sawarni1, Nirjhar Das1, Siddharth Barman2, Gaurav Sinha1

1Microsoft Research India, 2Indian Institute of Science

Generalized Linear Bandits
Generalized Linear Models: Random variable r

has PDF with parameter z :

Pz [r] = exp(rz − b(z) + c(r))

b(z) is convex and µ(z) := ḃ(z) = Ez [r].
• We consider GLMs with r ∈ [0, R] a.s.

At every round t ∈ {1, . . . , T}:
1. A context Xt = {x1,t, . . . , xK,t} ⊂ Rd is pre-

sented
2. Learner plays arm xt ∈ Xt according to some

policy πt
3. Learner observes reward rt sampled from a

GLM with parameter x⊺t θ
∗

4. (Optional) Learner updates policy πt to πt+1
using observation and history

Limited Adaptivity
Model M1: Learner can update policy only M

(given) number of times. Learner must declare be-

fore the start of bandit instance at which rounds it

will update its policy.

Model M2: Learner can update the policy for

polylog(T) times. Learner can decide adaptively

in which rounds it will update the policy.

B-GLinUCB for M1
• Stochastic Contexts i.e., Xt ∼ D
• Performance: Regret over T rounds given by-

RT = E
[T∑
t=1

(
max
x∈Xt
µ(x⊺θ∗)− µ(x⊺t θ∗)

)]
• Non-linearity measures: For arm set X , let x∗ =

argmax
x∈X

µ(x⊺θ∗). Define the quantities:

κ := max
X∈supp(D)

max
x∈X

1

µ̇(x⊺θ∗)
1

κ∗
:= max
X∈supp(D)

µ̇(x∗⊺θ∗)

1

κ̂
:= EX∼D [µ̇(x∗⊺θ∗)]

Optimal Design Policies
G-Optimal Design

Let X ⊂ Rd and ∆(X) be set of probability dis-

tributions supported on X . For λ ∈ ∆(X), let

U(λ) = E
x∼λ
[xx⊺]. Define:

πG = argmin
λ∈∆(X)

max
x∈X
∥x∥2U(λ)−1

πD = argmax
λ∈∆(X)

log det
(
U(λ)

)
Kiefer-Wolfowitz Theorem: πG = πD and

maxx∈X∥x∥2U(πG)−1 = d .

Distributional Optimal Design [Ruan et al.

(2021)]

Let M = {(pi ,Mi)}ni=1 where, pi ≥ 0 and∑
i pi = 1. For any i ∈ [n], let πMi ∈ ∆(X)

defined as:

πMi(x) =
∥x∥2αMi∑
y∈X∥y∥2αMi

∀ x ∈ X

Distributional Optimal Design π for col-

lectionM is given as:

π(x) =
1

2
πG(x) +

n∑
i=1

pi
2
πMi(x), ∀x ∈ X

Lemma: Let X1, . . . ,Xs
i.i.d∼ D and let M be

constructed using Algorithm 2 of [1]. Further,

define W = E
X∼D

[
E
x∼π
[xx⊺ | X]

]
. Then, with

high probability,

E
X∼D

[
max
x∈X
∥x∥W−1

]
≤ O(

√
d log d)

Algorithm
Batch lengths τk , k ∈ [M] are calculated as:

τ1 :=

(√
κ e3Sd2γ2

S
α

)2/3
,

τ2 := α, τk := α
√
τk−1, for k ∈ [3,M]

where γ := 30RS
√
d logT (∥θ∗∥ ≤ S) and α =

T
1

2(1−2−M+1) if M ≤ log logT and α = 2
√
T else.

B-GLinUCB
1. τ1 rounds, play arms using πG and observe rewards.
2. Obtain θ̂w via MLE.
3. For batches k = 2, . . . ,M do:
4. For τk rounds do:
5. Receive arm set Xt.
6. Use previous estimates of θ∗ to eliminate

arms.
7. Scale the reduced arm set with a non-

linearity factor.
8. Play an arm based on Distributional
Optimal Design policy on the scaled arm set.

9. Estimate (via MLE) θ∗ .
10. Construct a new Distributional Optimal

Design policy.

Theorem: Regret of B-GLinUCB RT ≤ (R1 +
R2) log logT , where

R1 = O

(
RSd

(√
d

κ̂
∧
√
1

κ∗

)
T

1

2(1−21−M) logT

)
and

R2 = O
(
κ1/3d2e2S(RS logT)2/3T

1

3(1−21−M)

)
.

Corollary: When M ≥ log logT , B-GLinUCB

achieves a regret bound of

RT ≤ Õ
((√

d

κ̂
∧
√
1

κ∗

)
dRS

√
T

+d2e2S(S2R2κT)1/3
)

RS-GLinUCB for M2
• Adversarial Contexts: Xt can be any subset of Rd

• Performance: Regret over T rounds given by-

RT =
T∑
t=1

(
max
x∈Xt
µ(x⊺θ∗)− µ(x⊺t θ∗)

)
• Non-linearity measure: For adversarial context

κ := max
x∈∪Tt=1Xt

1

µ̇(x⊺θ∗)

Algorithm

Key Highlights
• Optimal Regret: Resolves conjecture in GLM

Bandit by removing κ from
√
T -term

• Computationally Efficient: Update time is per

round amortized O(poly(d) logT)

• S-free Regret: Resolves conjecture of polyno-

mial dependence on S in regret’s leading term

Main Idea: Context-dependent switching criterion

in addition to determinant-doubling trick

RS-GLinUCB
1. Initialize: V = H1 = λI, To = ∅, τ = 1,
λ := d log(T/δ)/R2 and γ := 25RS

√
d log

(
T
δ

)
.

2. For rounds t = 1, . . . , T do:
3. Observe arm set Xt.
4. If max

x∈Xt
∥x∥2V−1 ≥ 1/(γ

2κR2) [Criterion I]

5. Select xt = argmax
x∈Xt

∥x∥V−1 and observe rt.

6. Update To ← To ∪ {t}, V← V+ xtx⊺t and
Ht+1 ← Ht.

7. Compute θ̂o = argmin
θ

∑
s∈To ℓ(θ, xs, rs) +

λ
2∥θ∥

2
2.

8. Else
9. If det(Ht) > 2 det(Hτ) [Criterion II]

10. Set τ = t and θ̃ ← argmin
θ

λ
2∥θ∥

2
2 +∑

s∈[t−1]\To ℓ(θ, xs, rs)

11. θ̂τ ← Project(θ̃)
12. Update Xt ← Xt \ {x ∈ Xt : UCBo(x) <
maxz∈Xt LCBo(z)}.

13. Select xt = argmax
x∈Xt

UCB(x,Hτ , θ̂τ) and

observe reward rt.
14. Update Ht+1 ← Ht + µ̇(x

⊺
t θ̂w)
e xtx

⊺
t .

Theorem: Given δ ∈ (0, 1), with probability ≥
1− δ, the regret of RS-GLinUCB satisfies

RT = O
(
d

√∑
t∈[T]

µ̇(x∗⊺t θ
∗) log (RT/δ)+

κd2R5S2 log2 (T/δ)

)
Lemma: RS-GLinUCB, during its entire execution,

updates its policy at most O(R4S2 κd2 log2(T/δ))

times.

