Generalized Linear Bandits with Limited Adaptivity

Ayush Sawarni¹, Nirjhar Das¹, Siddharth Barman², Gaurav Sinha¹ ¹Microsoft Research India, ²Indian Institute of Science

Generalized Linear Bandits

Generalized Linear Models: Random variable *r* has PDF with parameter *z*:

 $\mathbb{P}_{z}[r] = \exp(rz - b(z) + c(r))$

b(z) is convex and $\mu(z) := \dot{b}(z) = \mathbb{E}_{z}[r]$.

• We consider GLMs with $r \in [0, R]$ a.s.

At every round $t \in \{1, \ldots, T\}$:

- 1. A context $\mathcal{X}_t = \{x_{1,t}, \dots, x_{K,t}\} \subset \mathbb{R}^d$ is presented
- 2. Learner plays arm $x_t \in \mathcal{X}_t$ according to some policy π_t
- 3. Learner observes *reward* r_t sampled from a GLM with parameter $x_t^T \theta^*$
- 4. (Optional) Learner updates policy π_t to π_{t+1} using observation and history

Limited Adaptivity

Model M1: Learner can update policy only M

Distributional Optimal Design [Ruan et al. (2021)] Let $\mathcal{M} = \{(p_i, \mathbf{M}_i)\}_{i=1}^n$ where, $p_i \ge 0$ and $\sum_i p_i = 1$. For any $i \in [n]$, let $\pi_{\mathbf{M}_i} \in \Delta(\mathcal{X})$ defined as: $\pi_{\mathbf{M}_i}(x) = \frac{\|x\|_{\mathbf{M}_i}^{2\alpha}}{\sum_{y \in \mathcal{X}} \|y\|_{\mathbf{M}_i}^{2\alpha}} \quad \forall x \in \mathcal{X}$ Distributional Optimal Design π for collection \mathcal{M} is given as: $\pi(x) = \frac{1}{2}\pi_G(x) + \sum_{i=1}^n \frac{p_i}{2}\pi_{\mathbf{M}_i}(x), \quad \forall x \in \mathcal{X}$

Lemma: Let $\mathcal{X}_1, \ldots, \mathcal{X}_s \stackrel{\text{i.i.d}}{\sim} \mathcal{D}$ and let \mathcal{M} be constructed using Algorithm 2 of [1]. Further, define $\mathbf{W} = \underset{\mathcal{X}\sim\mathcal{D}}{\mathbb{E}} [\underset{x\sim\pi}{\mathbb{E}} [xx^{\mathsf{T}} \mid \mathcal{X}]]$. Then, with high probability,

$$\mathbb{E}_{\mathcal{X}\sim\mathcal{D}}\left[\max_{x\in\mathcal{X}}\|x\|_{\mathbf{W}^{-1}}\right] \leq O(\sqrt{d\log d})$$

RS-GLinUCB for M2

• Adversarial Contexts: \mathcal{X}_t can be any subset of \mathbb{R}^d

• Performance: Regret over T rounds given by-

$$\mathsf{R}_{T} = \sum_{t=1}^{I} \left(\max_{x \in \mathcal{X}_{t}} \mu(x^{\mathsf{T}}\theta^{*}) - \mu(x_{t}^{\mathsf{T}}\theta^{*}) \right)$$

• Non-linearity measure: For adversarial context

$$\kappa \coloneqq \max_{x \in \cup_{t=1}^{T} \mathcal{X}_t} \frac{1}{\dot{\mu}(x^{\intercal} \theta^*)}$$

Algorithm

Key Highlights

Optimal Regret: Resolves conjecture in GLM Bandit by removing κ from √T-term
Computationally Efficient: Update time is per

round amortized $O(poly(d) \log T)$

• S-free Regret: Resolves conjecture of polyno-

(given) number of times. *Learner must declare before the start of bandit instance at which rounds it will update its policy*.

Model M2: Learner can update the policy for polylog(T) times. Learner can decide adaptively in which rounds it will update the policy.

B-GLinUCB for M1

- Stochastic Contexts i.e., $\mathcal{X}_t \sim \mathcal{D}$
- Performance: Regret over T rounds given by-

 $\mathsf{R}_{T} = \mathbb{E} \Big[\sum_{t=1}^{T} \big(\max_{x \in \mathcal{X}_{t}} \mu(x^{\mathsf{T}}\theta^{*}) - \mu(x_{t}^{\mathsf{T}}\theta^{*}) \big) \Big]$

• Non-linearity measures: For arm set \mathcal{X} , let $x^* = \arg \max_{x \in \mathcal{X}} \mu(x^{\mathsf{T}}\theta^*)$. Define the quantities:

$$\begin{split} \kappa &\coloneqq \max_{\mathcal{X} \in \text{supp}(\mathcal{D})} \max_{x \in \mathcal{X}} \frac{1}{\dot{\mu}(x^{\intercal}\theta^{*})} \\ \frac{1}{\kappa^{*}} &\coloneqq \max_{\mathcal{X} \in \text{supp}(\mathcal{D})} \dot{\mu}(x^{*\intercal}\theta^{*}) \\ \frac{1}{\hat{\kappa}} &\coloneqq \mathbb{E}_{\mathcal{X} \sim \mathcal{D}} \left[\dot{\mu}(x^{*\intercal}\theta^{*}) \right] \end{split}$$

Optimal Design Policies

G-Optimal Design

Let $\mathcal{X} \subset \mathbb{R}^d$ and $\Delta(\mathcal{X})$ be set of probability distributions supported on \mathcal{X} . For $\lambda \in \Delta(\mathcal{X})$, let

Algorithm

Batch lengths τ_k , $k \in [M]$ are calculated as:

$$\tau_1 := \left(\frac{\sqrt{\kappa} \ e^{3S} d^2 \gamma^2}{S} \alpha\right)^{2/3},$$

$$\tau_2 := \alpha, \tau_k := \alpha \sqrt{\tau_{k-1}}, \text{ for } k \in [3, M]$$

where $\gamma := 30RS\sqrt{d\log T} \ (\|\theta^*\| \le S) \text{ and } \alpha$

 $T^{\frac{1}{2(1-2^{-M+1})}}$ if $M \leq \log \log T$ and $\alpha = 2\sqrt{T}$ else.

B-GLinUCB

1. τ_1 rounds, play arms using π_G and observe rewards. 2. Obtain θ_w via MLE. 3. For batches $k = 2, \ldots, M$ do: For τ_k rounds do: 4. Receive arm set \mathcal{X}_t . 5. Use previous estimates of θ^* to eliminate 6. arms. Scale the reduced arm set with a non-7. linearity factor. Play an arm based on Distributional 8. Optimal Design policy on the scaled arm set. 9. Estimate (via MLE) θ^* . 10. Construct a new Distributional Optimal Design policy. **Theorem**: Regret of B-GLinUCB $R_T \leq (R_1 +$ R_2) log log T, where $\mathsf{R}_1 = O\left(RSd\left(\sqrt{\frac{d}{\widehat{\kappa}}} \wedge \sqrt{\frac{1}{\kappa^*}}\right)T^{\frac{1}{2(1-2^{1-M})}}\log T\right) \text{ and }$ $\mathsf{R}_2 = O\left(\kappa^{1/3} d^2 e^{2S} (RS \log T)^{2/3} T^{\frac{1}{3(1-2^{1-M})}}\right).$

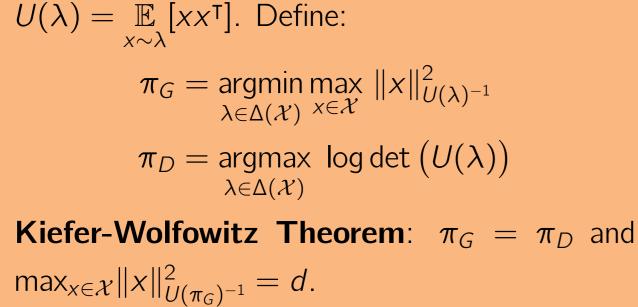
mial dependence on S in regret's leading term

Main Idea: Context-dependent switching criterion *in addition to* determinant-doubling trick

RS-GLinUCB

1. Initialize: $\mathbf{V} = \mathbf{H}_1 = \lambda \mathbf{I}, \ \mathcal{T}_o = \emptyset, \ \tau = 1,$ $\lambda := d \log(T/\delta)/R^2$ and $\gamma := 25RS \sqrt{d \log(\frac{T}{\delta})}$. 2. For rounds $t = 1, \ldots, T$ do: 3. Observe arm set \mathcal{X}_t . If $\max_{\mathbf{v} \in \mathcal{V}} \|x\|_{\mathbf{V}^{-1}}^2 \ge 1/(\gamma^2 \kappa R^2)$ [Criterion I] 4. Select $x_t = \operatorname{argmax} ||x||_{\mathbf{V}^{-1}}$ and observe r_t . 5. Update $\mathcal{T}_o \leftarrow \mathcal{T}_o \cup \{t\}, \mathbf{V} \leftarrow \mathbf{V} + x_t x_t^{\mathsf{T}}$ and $\mathbf{H}_{t+1} \leftarrow \mathbf{H}_t$. Compute $\hat{\theta}_o = \operatorname{argmin}_{s \in \mathcal{T}_o} \ell(\theta, x_s, r_s) +$ 7. $\frac{\lambda}{2} \|\theta\|_2^2.$ 8. Else If det(\mathbf{H}_t) > 2 det(\mathbf{H}_{τ}) [Criterion II] 9. Set $\tau = t$ and $\theta \leftarrow \operatorname{argmin} \frac{\lambda}{2} \|\theta\|_2^2 +$ 10. $\sum_{s\in[t-1]\setminus\mathcal{T}_{o}}\ell(\theta, x_{s}, r_{s})$ $\widehat{\theta}_{\tau} \leftarrow \operatorname{Project}(\widetilde{\theta})$ 11. Update $\mathcal{X}_t \leftarrow \mathcal{X}_t \setminus \{x \in \mathcal{X}_t : UCB_o(x) < d\}$ 12. $\max_{z \in \mathcal{X}_t} LCB_o(z)$. Select x_t = argmax $UCB(x, \mathbf{H}_{\tau}, \hat{\theta}_{\tau})$ and 13. $x \in \mathcal{X}_t$ observe reward r_t . Update $\mathbf{H}_{t+1} \leftarrow \mathbf{H}_t + \frac{\dot{\mu}(x_t^{\mathsf{T}}\hat{\theta}_w)}{e} x_t x_t^{\mathsf{T}}$. 14.

Theorem: Given $\delta \in (0, 1)$, with probability $\geq 1 - \delta$, the regret of RS-GLinUCB satisfies



Corollary: When $M \ge \log \log T$, B-GLinUCB achieves a regret bound of $R_T \le \widetilde{O}\left(\left(\sqrt{\frac{d}{\widehat{\kappa}}} \land \sqrt{\frac{1}{\kappa^*}}\right) dRS\sqrt{T} + d^2 e^{2S} (S^2 R^2 \kappa T)^{1/3}\right)$

$$R_{T} = O\left(d\sqrt{\sum_{t \in [T]} \dot{\mu}(x_{t}^{*\mathsf{T}}\theta^{*})}\log\left(RT/\delta\right) + \kappa d^{2}R^{5}S^{2}\log^{2}\left(T/\delta\right)\right)$$

Lemma: RS-GLinUCB, during its entire execution, updates its policy at most $O(R^4S^2 \kappa d^2 \log^2(T/\delta))$ times.

