
Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Stacking Your Transformers
A Closer Look at Model Growth for Efficient LLM Pre-Training

Wenyu Du1 Tongxu Luo1 Zihan Qiu Zeyu Huang Yikang Shen
Reynold Cheng Yike Guo Jie Fu2

The University of Hong Kong Hong Kong University of Science and Technology

Tsinghua University University of Edinburgh MIT-IBM Watson AI Lab

1 Equal Contributions
2 Corresponding Author

Du et al. Jul 2024 1 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Table of Contents

1 Motivation

2 Obstacle 1

3 Obstacle 2

4 Obstacle 3

5 Ablations

6 Conclusion

Du et al. Jul 2024 2 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

What is Model Growth?

Aim
• Leverage trained smaller (base) models to accelerate the training of larger

(target) models.
• Expect a faster speed given the same budget, compared with model trained from

scratch.

Process

Train a small model Grow Continual training the large model

Du et al. Jul 2024 3 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Example: Net2Net, ICLR 2016

y

h[1] h[2]

x[1] x[2]

a

b c

d

e f

y

h[1] h[2]

x[1] x[2]

a

b c
d

e f/2

h[3]
c

d

f/2

h[1] = ReLU(x [1] · a + x [2] · b) (1)
h[2] = ReLU(x [1] · c + x [2] · d) (2)

y = ReLU(h[1] · e + h[2] · f) (3)
(4)

h[1] = ReLU(x [1] · a + x [2] · b) (5)
h[2] = ReLU(x [1] · c + x [2] · d) (6)
h[3] = ReLU(x [1] · c + x [2] · d) (7)

y = ReLU(h[1] · e + h[2] · f
2
+ h[3] · f

2
) (8)

Du et al. Jul 2024 4 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

What is Model Growth?

Many Follow-ups
• stackBert ICML19, bert2bert ACL20, stagedTrain 22, GradMax ICLR22, LiGO

ICLR23, Lemon ICLR24, MSG ICLR24, . . .
Impressive performance
• And they assert they can speedup the training phase for about 30% to 60%.

But ...
• These techniques are underexplored in pre-training LLM. Underexplored

• Considering how expensive LLM pre-training is, if we could successfully adopt model
growth techniques to LLM pre-training, which would be a great contribution to
efficiency and resource-saving. Expensive

Du et al. Jul 2024 5 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Underexplored in Efficient LLM Pre-Training

• Model growth techniques are underexplored in pre-training LLM.

Figure: MSG ICLR24 Figure: LEMON ICLR24

Du et al. Jul 2024 6 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Expensive in LLM Pre-Training
• The advance of LLM comes at the expensive cost of energey consumption3.

31, A Survey of Resource-efficient LLM and Multimodal Foundation Models, 2024.

Du et al. Jul 2024 7 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Investigate Model Growth for LLM Pre-Training

Therefore, in this work ...

Aim in this work
We aim to investigate model growth for efficient LLM pre-training.

*In this presentation
• This presentation is basically showing the steps involved in our investigation of

this project.
• Particularly, we address Three Obstacles step by step.

Du et al. Jul 2024 8 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Three Identified Obstacles and Three Corresponding Questions
• O1: Lack of comprehensive assessment
⇒ Q1: Do Model Growth Methods Work in LLM Pre-Training?

• O2: The untested scalability
⇒ Q2: Are These Methods scalable?

• O3: Lack of empirical guidelines
⇒ Q3: How to use in practice?

1 Investigate O1(Lack of comprehensive assessment) Obstacle One

2 if Q1 is true:
3 Investigate O2(The untested scalability) Obstacle Two

4 if Q2 is true:
5 Investigate O3(Lack of empirical guidelines) Obstacle Three

Du et al. Jul 2024 8 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Obstacle One - Lack of Comprehensive Assessment

Aim
Examine whether model growth techniques actually work in LLM pre-training.

Process
1 Category model growth techniques into four atomic growth operators, Gdirect,

Glearn, Gzero and Grandom.
2 Then we examine them into depthwise growth and widthwise growth, G↑ and

G→.

Du et al. Jul 2024 9 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Four Atomic Growth Operators: G

(c) 𝑮𝒛𝒆𝒓𝒐
→

𝑾𝟎 𝑾𝟏

𝑾𝟐 𝑾𝟑

𝑹𝟎

𝑹𝟏

𝑶 𝑶 𝑹𝟐

𝑩𝒂𝒔𝒆

𝑾𝟎 𝑾𝟏

𝑾𝟐 𝑾𝟑

𝑾 Old parameter

𝑫

𝑹

New parameter
from the old

New parameter
from random

Training needed 𝐻 Hyper network

𝑶 New parameter
assigned to zero

(a) 𝑮𝒅𝒊𝒓𝒆𝒄𝒕
→ and 𝑮𝒅𝒊𝒓𝒆𝒄𝒕

↑ (𝑮𝒔𝒕𝒂𝒄𝒌)

𝜶𝑾𝟎 𝑾𝟏

𝜶𝑾𝟐 𝑾𝟑

𝑫𝟎

= 𝜷𝑾𝟎

𝑫𝟏

= 𝜷𝑾𝟐

𝑫𝟒

= 𝜶𝑾𝟐

𝑫𝟑

= 𝑾𝟑

𝑫𝟐

= 𝜷𝑾𝟐

α + β = 1Split

Copy

(d) 𝑮𝒓𝒂𝒏𝒅𝒐𝒎
→

𝑾𝟎 𝑾𝟏

𝑾𝟐 𝑾𝟑

𝑹𝟒 𝑹𝟑

Layer

Mask
0 → 1𝑹𝟎

𝑹𝟏

𝑹𝟐

(b) 𝑮𝒍𝒆𝒂𝒓𝒏
→

𝑾𝟎 𝑾𝟏

𝑾𝟐 𝑾𝟑

𝑫𝟎 𝑫𝟏

𝑫𝟑 𝑫𝟒

𝑫𝟐

𝑫𝟓

𝑫𝟔 𝑫𝟕 𝑫𝟖

𝐻

×

=

Layer

Layer

Copy

Tips
You may refer to
animated GIF atomic
growth operators.

Du et al. Jul 2024 10 / 30

https://llm-stacking.github.io/
https://llm-stacking.github.io/

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Experiment Details

• Codebase: Tiny-llama codebase https://github.com/jzhang38/TinyLlama

• Dataset: Slimpajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

Process – Grow from 410M LLM to 1.1B LLM

Train a LLM(6L;2048H) for 10B tokens

LLM(24L;2048H) = G↑(LLM(6L;2048H))

Then train LLM(24L;2048H) for 100B tokens

Train a LLM(24L;1024H) for 10B tokens

LLM(24L;2048H) = G→(LLM(24L;1024H))

Then train LLM(24L;2048H) for 100B tokens

Du et al. Jul 2024 11 / 30

https://github.com/jzhang38/TinyLlama
https://huggingface.co/datasets/cerebras/SlimPajama-627B

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Experiment Results

| | | | | | | | |

48.20 48.67 44.14 48.36 46.16 44.67 44.24 45.66 47.87

29.18 28.32 28.41 27.38 28.58 26.70 27.64 26.70 27.21

54.25 51.76 52.69 51.17 51.55 49.70 53.82 50.37 48.86

28.87 27.95 25.96 28.11 27.34 25.03 26.11 26.57 25.96

71.98 71.81 70.78 71.16 69.47 69.74 70.13 69.91 69.64

81.1 81.9 77.7 80.0 81.4 76.0 79.5 79.5 76.8

56.03 56.98 53.35 54.45 54.22 54.93 52.95 53.51 54.53

52.80 52.48 50.43 51.52 51.25 49.54 50.63 50.32 50.12

16.73 17.35 17.85 16.93 18.03 18.76 18.29 18.44 17.98

2.151 2.161 2.258 2.156 2.209 2.249 2.227 2.233 2.204

49.1% 46.6% -25.7% 48.6% -0.7% -17.9% -13.8% -15.4% 0.0%

Lambada (↑) -

ARC-c (↑) -

ARC-e (↑) -

Logiqa (↑) -

PIQA (↑) -

Sciq (↑) -

Winogrande (↑) -

Avg. (↑) -

Wikitext (↓) -

Loss (↓) -

Depth Width

𝑠𝑐𝑟𝑎𝑡𝑐ℎ

Baseline

𝐺𝑑𝑖𝑟𝑒𝑐𝑡
↑ 𝐺𝑧𝑒𝑟𝑜

↑ 𝐺𝑟𝑎𝑛𝑑𝑜𝑚
↑ 𝐺𝑙𝑒𝑎𝑟𝑛

↑ 𝐺𝑑𝑖𝑟𝑒𝑐𝑡
→ 𝐺𝑧𝑒𝑟𝑜

→ 𝐺𝑟𝑎𝑛𝑑𝑜𝑚
→ 𝐺𝑙𝑒𝑎𝑟𝑛

→

Speed-up (↑) -

Takeaways
• In general, G↑

is better than
G→.

• G↑
direct

emerges as
the clear
winner.

• We denote
G↑

direct as
Gstack.

Back to Three Obstacles

Du et al. Jul 2024 12 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Obstacle Two - The Untested Scalability

Aim
Is Gstack scalable (robust) in efficient LLM pre-training?

Process
1 Scale to training 3B and 7B LLMs.

Train a LLM(8L;2560H) for 10B tokens

LLM(32L;2560H) = Gstack(LLM(8L;2560H))

Then train LLM(32L;2560H) for 300B tokens

Train a LLM(8L;4096H) for 10B tokens

LLM(32L;4096H) = Gstack(LLM(8L;4096H))

Then train LLM(32L;4096H) for 300B tokens

Du et al. Jul 2024 13 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

0 10 20 30 40
FLOPs (1e+20)

2.0

2.2

2.4

2.6

2.8

Tr
ai

ni
ng

 L
os

s

scratch Gstack

0 50 100 150 200 250 300
Tokens (Billions)

20 25 30 35 40
1.95

2.00

2.05

2.10

2.15

48.6% 0.0%
54.5% 0.0%

150 200 250

Figure: Training Loss on 3B

0 20 40 60 80 100
FLOPs (1e+20)

1.8

2.0

2.2

2.4

2.6

2.8

Tr
ai

ni
ng

 L
os

s

scratch Gstack

0 50 100 150 200 250 300
Tokens (Billions)

40 60 80 100

1.9

2.0 40.8% 0.0%
55.3% 0.0%

53.8% 0.0%

150 200 250 300

Figure: Training Loss on 7B

Du et al. Jul 2024 14 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

10 20 30 40
FLOPs (1e+20)

42

44

46

48

50

52

54

56

Av
er

ag
e

Ac
cu

ra
cy

scratch Gstack

50 100 150 200 250 300
Tokens (Billions)

Figure: Average Accuracy on 3B

20 40 60 80 100
FLOPs (1e+20)

40

42

44

46

48

50

52

54

Av
er

ag
e

Ac
cu

ra
cy

scratch Gstack

50 100 150 200 250 300
Tokens (Billions)

Figure: Average Accuracy on 7B

Du et al. Jul 2024 15 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Obstacle Two - The Untested Scalability

Concern
Efficient strategies may initially learn faster but ultimately perform similarly or worse
than vanilla training methods when given more training data.

Process

2 Scale to larger training
tokens. We “overtrain” a
410M LLM for 750B tokens,
which is almost 100 times
larger than Chinchilla scaling
law recommended (8B).

Train a LLM(6L;1024H) for 10B tokens

LLM(24L;1024H) = Gstack(LLM(6L;1024H))

Then train LLM(24L;1024H) for 750B tokens

Du et al. Jul 2024 16 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

0 5 10 15
FLOPs (1e+20)

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Tr
ai

ni
ng

 L
os

s

scratch Gstack

0 200 400 600
Tokens (Billions)

6 8 10 12 14 16

2.25

2.30

2.35

53.1% 0.0%
33.7% 0.0%

31.0% 0.0%

300 400 500 600 700

Figure: Training Loss on 410M
with 750B tokens

2.5 5.0 7.5 10.0 12.5 15.0
FLOPs (1e+20)

42

43

44

45

46

47

48

49

Av
er

ag
e

Ac
cu

ra
cy

scratch Gstack

200 400 600
Tokens (Billions)

Figure: Average Accuracy on
410M with 750B tokens

0 50 100 150
Flops (1e+20)

0.00

0.02

0.04

0.06

0.08

0.10

Tr
ai

ni
ng

 L
os

s D
iff

er
en

ce

scratch Gstack

0 2000 4000 6000 8000
Tokens (Billions)

Figure: Loss Difference

Du et al. Jul 2024 17 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Estimated Scaling Laws

0.1 1 10 100 1000
FLOPs (1e+20)

1

2

3

4

6

9

Tr
ai

ni
ng

 L
os

s

scratch(410M)
Gstack(410M)
scratch(1.1B)
Gstack(1.1B)
scratch(3B)
Gstack(3B)
scratch(7B)

Gstack(7B)
Scratch Law
Stacking Law
scratch(13B)
Gstack(13B)
scratch(70B)
Gstack(70B)

• We plot our four models (410M, 1.1B,
3B, and 7B) on the same figure.

• Then uncover our “scaling law” using
the Gstack operator: LC = aCb

Takeaways
• Gstack is scalable in both model scale and

training tokens.
• Gstack scaling law exhibits improved

efficiency compared to the scaling law
estimated from baseline LLMs.

Back to Three Obstacles

Du et al. Jul 2024 18 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Obstacle Three - Lack of Empirical Guidelines

Aim
How to use Gstack in practice?

Process
Determining Growth Timing (d) and Growth Factor (g).
• Growth timing d : the training token d for the small model.
• Growth factor g: the factor by which the model parameters increased after

growth (roughly equivalent to the ratio of increased layers in Gstack).

log10(d) = a log10(N) +
b

log10(C)
+ c, (9)

where C is the computing budget and N is the target parameter size.
Du et al. Jul 2024 19 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Growth Timing d

0 1 5 10 20 50
Growth Timing (Billions of tokens)

2.4

2.5

2.6

2.7

Tr
ai

ni
ng

 L
os

s

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

FL
OP

s (
1e

+2
0)

Figure: IsoFLOP on 410M

0 1 5 10 20 50
Growth Timing (Billions of tokens)

2.2

2.3

2.4

2.5

2.6

Tr
ai

ni
ng

 L
os

s

2

3

4

5

6

7

FL
OP

s (
1e

+2
0)

Figure: IsoFLOP on 1.1B

0 1 5 10 20 50
Growth Timing (Billions of tokens)

2.2

2.3

2.4

2.5

2.6

2.7

Tr
ai

ni
ng

 L
os

s

4

5

6

7

8

9

10

11

12

FL
OP

s (
1e

+2
0)

Figure: IsoFLOP on 3B

Du et al. Jul 2024 20 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Predicting Growth Timing d

0 5 10 15
FLOPs (1e+20)

5

10

15

20

25

30

35

Gr
ow

th
 T

im
in

g
(B

illi
on

s o
f t

ok
en

s)

1

2

3

4

5

Pa
ra

m
et

er
s (

Bi
llio

ns
)

• We formalize a set of guidelines for effectively
utilizing the Gstack operator. For growth timing
d (tokens):

•

log10(d) = 0.88 log10(N) +
163.27
log10(C)

− 5.74 (10)

• where C is the computing budget and N is the
model parameters.

Du et al. Jul 2024 21 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Growth Factor g

1 2 4 8 24
Growth Factor

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Tr
ai

ni
ng

 L
os

s

2

3

4

5

6

7

FL
OP

s (
1e

+2
0)

Figure: IsoFLOP on 410M

1 4 8 16 32
Growth Factor

2.4

2.6

2.8

3.0

3.2

3.4

Tr
ai

ni
ng

 L
os

s

2

3

4

5

6

7

FL
OP

s (
1e

+2
0)

Figure: IsoFLOP on 1.1B

Takeaways
• For predicting growth

timing d , please refer to
Eq 10.

• For predicting growth
factor g, due to
computational
constraints, we indicate
that the optimal growth
factor g lies between 2
and 4.

Du et al. Jul 2024 22 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Takeaways of Three Obstacles

Back to Three Obstacles

• Q1: Do Model Growth Methods Work in LLM Pre-Training?
⇒ We summarize the existing model growth approaches into four operators and
make a comprehensive evaluation, the depthwise growth Gstack beats all other
methods.

• Q2: Are These Methods scalable?
⇒ We scale up Gstack by extending the model size and training data scales. We
find that Gstack operator has excellent scalability.

• Q3: How to use in practice?
⇒ We systematically analyze the usage of the Gstack operator, focusing on growth
timing and growth factor. We provide guidelines of equations for effectively
utilizing the Gstack operator.

Du et al. Jul 2024 23 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

How to stack?
1. Gradual Stacking

• We compare our
“one-hop” Gstack and
gradual stacking
approach (two-step:
train-stack-train-stack).

• Gstack achieves a 2.4
higher average accuracy
and 0.6 better Wikitext
PPL than gradual stacking
when pre-training large
models for 100B tokens. 0 2 4 6 8

FLOPs (1e+20)
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Tr
ai

ni
ng

 L
os

s

scratch
Gstack(6L; 10B)

Ggradual(6L; 50B)
Ggradual(12L; 50B)

0 20 40 60 80
Tokens (Billions)

6 7
2.15

2.20

2.25

70 80

2 4 6 8
FLOPs (1e+20)

44

46

48

50

52

Av
er

ag
e

Ac
cu

ra
cy

scratch
Gstack

Ggradual

20 40 60 80
Tokens (Billions)

Du et al. Jul 2024 24 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

How to stack?
2. Interpolation

• Gstack involves taking the
entire small model as a
unit and directly stacking
it, which can retain the
connections between
most layers.

• Interpolation involves
replicating and
interleaving each layer in
the small model, which
almost break the
connections.

0.0 2.5 5.0 7.5 10.0 12.5
FLOPs (1e+20)

2.2

2.4

2.6

2.8

3.0

Tr
ai

ni
ng

 L
os

s

scratch
Ginterpolate

Gstack

0 20 40 60 80
Tokens (Billions)

10 11 12

2.15

2.20

2.25
70 80

2 4 6 8 10 12 14
FLOPs (1e+20)

42

44

46

48

50

52

Av
er

ag
e

Ac
cu

ra
cy

scratch
Ginterpolate

Gstack

20 40 60 80
Tokens (Billions)

Du et al. Jul 2024 25 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

To measure the degree of adjacent inter-layer connections after stacking, we define
the connection rate Rc :

Rc =
Conr

Conall
(11)

where the Conr is number of retained connections, the Conall is number of all layers.

Example
For example, if we had a small model with three layers, denoted as {L1,L2,L3}, and
desired a model depth of 6, Gstack would result in {L1,L2,L3,L1,L2,L3}, where its
Rc = 80%. The interpolation approach would result in {L1,L1,L2,L2,L3,L3}, where its
Rc = 40%.

Du et al. Jul 2024 26 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

How to stack?
3. Partial Stacking

• We stack a small model
with 6
layers ({L1,L2, · · · ,L6}) to a
24 layers target model.

• Partial stacking has been
explored in LLMs like
LlamaProa, Solarb. But
their goal is to stack an
off-the-shelf LLM such as
Llama2.

a2, “Llama pro: Progressive llama with block
expansion”, 2024.

b3, “Solar 10.7 b: Scaling large language models
with simple yet effective depth up-scaling”, 2023.

0 2 4 6 8
FLOPs (1e+20)

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Tr
ai

ni
ng

 L
os

s

scratch
Gstack(123456 * 4)
Gstack(123 * 7 456)
Gstack(1 234 * 7 56)
Gstack(12 345 * 7 6)

Gstack(123 456 * 7)
Gstack(12 3456 * 5 56)
Gstack(12 34 * 10 56)
Gstack(1234 56 * 10)

0 20 40 60 80
Tokens (Billions)

6 7
2.15

2.20

2.25

70 80

2 4 6 8
FLOPs (1e+20)

44

46

48

50

52

Av
er

ag
e

Ac
cu

ra
cy

scratch
Gstack(123456 * 4)
Gstack(123 * 7 456)
Gstack(1 234 * 7 56)
Gstack(12 345 * 7 6)

Gstack(123 456 * 7)
Gstack(12 3456 * 5 56)
Gstack(12 34 * 10 56)
Gstack(1234 56 * 10)

20 40 60 80
Tokens (Billions)

Du et al. Jul 2024 27 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Eight partial stacking methods can be divided into three groups based on their loss.
• The first group, {123456*4, 12-3456*5-56, 12-345*7-6, 123-456*7}, achieves the best.
• The second group consisting of {1234-56*10, 12-34*10-56, 1-234*7-56}, performs just

fine.
• The third group, {123*7-456}, performs poorly, even worse than the baseline.

Group Method Stacked parts Rc

First

123456*4 all 87.0%
12-3456*5-56 middle-back 78.3%

12-345*7-6 middle-back 74.0%
123-456*7 back 74.0%

Second
1234-56*10 back 60.7%
12-34*10-56 middle 60.7%
1-234*7-56 front-middle 74.0%

Third 123*7-456 front 74.0%

Takeaways
• we conclude that: all >

middle ≈ back ≫ front.
• Meanwhile, when the

stacked parts are the
same, the larger the
Rc , the better the
performance.

Du et al. Jul 2024 28 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Conclusion

• This work empirically explores model growth approaches for efficient LLM
pre-training.

• We first comprehensively evaluate model growth techniques into four atomic
operators and explore depthwise growth Gstack beats all other methods and
baselines in various evaluations.

• We next address concerns about the scalability of Gstack by extending the model
and training data scales.

• Furthermore, we systematically analyze the usage of the Gstack operator,
focusing on growth timing and growth factor.

Please visit homepage for the paper, codes and ckpts: https://llm-stacking.github.io/

Du et al. Jul 2024 29 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Thanks!

Du et al. Jul 2024 30 / 30

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

References I

[1] Mengwei Xu et al. A Survey of Resource-efficient LLM and Multimodal Foundation
Models. 2024. arXiv: 2401.08092 [cs.LG]. URL:
https://arxiv.org/abs/2401.08092.

[2] Chengyue Wu et al. “Llama pro: Progressive llama with block expansion”. In:
arXiv preprint arXiv:2401.02415 (2024).

[3] Dahyun Kim et al. “Solar 10.7 b: Scaling large language models with simple yet
effective depth up-scaling”. In: arXiv preprint arXiv:2312.15166 (2023).

Du et al. Jul 2024 30 / 30

https://arxiv.org/abs/2401.08092
https://arxiv.org/abs/2401.08092

	
	Motivation
	Obstacle 1
	Obstacle 2
	Obstacle 3
	Ablations
	Conclusion
	References

