

Stacking Your Transformers A Closer Look at **Model Growth** for **Efficient LLM Pre-Training**

Wenyu Du¹ Tongxu Luo¹ Zihan Qiu Zeyu Huang Yikang Shen Reynold Cheng Yike Guo Jie Fu²

The University of Hong Kong Hong Kong University of Science and Technology

Tsinghua University University of Edinburgh MIT-IBM Watson AI Lab

Iul 2024

¹ Equal Contributions

² Corresponding Author

Du et al.

- Motivation
- Obstacle 1
- Obstacle 2
- 4 Obstacle 3
- 6 Ablations
- 6 Conclusion

Aim 🞯

- Leverage trained smaller (base) models to accelerate the training of larger (target) models.
- Expect a faster speed given the same budget, compared with model trained from scratch.

- $h[1] = \operatorname{ReLU}(x[1] \cdot a + x[2] \cdot b)$ $h[2] = \operatorname{ReLU}(x[1] \cdot c + x[2] \cdot d)$ $y = \text{ReLU}(h[1] \cdot e + h[2] \cdot f)$

Ablations

Obstacle 3

Example: Net2Net, ICLR 2016

Obstacle 2

Obstacle 1

Motivation

000000

References

Conclusion

 $y = \text{ReLU}(h[1] \cdot e + h[2] \cdot \frac{f}{2} + h[3] \cdot \frac{f}{2})$

lul 2024

Many Follow-ups

 stackBert ICML19, bert2bert ACL20, stagedTrain 22, GradMax ICLR22, LiGO ICLR23, Lemon ICLR24, MSG ICLR24, ...

Impressive performance

• And they assert they can **speedup the training phase for about 30% to 60%**.

But ...

- Considering how expensive LLM pre-training is, if we could successfully adopt model growth techniques to LLM pre-training, which would be a great contribution to efficiency and resource-saving. <- Expensive

Underexplored in Efficient LLM Pre-Training

Obstacle 2

Model growth techniques are underexplored in pre-training LLM.

Obstacle 3

Ablations

Figure: MSG ICLR24

Obstacle 1

Figure: LEMON ICLR24

Conclusion

Method	Wall time	GLUE Avg.	CoLA	SST-2	MRPC	STS-B	
Full-B	26h, 10min	80.7(0.2)	52.2(0.8)	90.4(0.2)	85.9(0.9)/90.1(0.5)	88.8(0.1)/88.4(0.1)	
N2N-sch1-B	14h, 36min	80.5(0.2)	52.4(1.5)	91.1(0.4)	84.3(0.9)/88.8(0.6)	88.3(0.1)/88.0(0.1)	
MSG-sch1-B	14h, 32min	81.0(0.2)	58.2(1.6)	91.0(0.2)	85.0(0.5)/89.4(0.5)	88.1(0.1)/87.6(0.1)	
Method	QQP	MNLI(m/mm)	QNLI	RTE	SQuA	Dv1.1	
Full-B	90.6(0.1)/87.3(0.1)	82.5(0.3)/82.9(0.1)	89.9(0.1)	65.1(0.7)	79.1(0.2)	/86.9(0.2)	
N2N-sch1-B	90.1(0.3)/87.0(0.1)	81.1(0.2)/82.1(0.1)	89.2(0.1)	66.3(0.5)	79.0(0.1)/86.7(0.0)		
MSG-sch1-B	90.0(0.1)/87.0(0.1)	81.8(0.3)/82.4(0.2)	89.9(0.1)	63.1(1.6)	79.6(0.5)	(87.2(0.4)	

Table 3: Evaluation of Bert-base after fine-tuning on downstream tasks. For metrics, we use Matthews correlation for CoLA, Pearson/Spearman correlation for STS-B, accuracy/f1 for MRPC, QQP, and SQuAD, and accuracy for all the other tasks. The numbers are mean (standard deviation) computed across 3 runs. Table 2: Downstream performance of BERT(12, 768) on the GLUE dataset: Large model expanded from BERT(6.384) achieves the best downstream performance. A potential reason for this may be its longer training duration (165k) compared to the BERT(6.512) (132k).

Dataset (Metric)	STS-B (Corr.)	MRPC (Acc.)			QNLI (Acc.)		MNLI-mm (Acc.)	QQP (Acc.)
Train from scratch	0.744	83.33	0.19	88.88	87.80	80.28	81.17	89.62
LEMON (Ours), from BERT(6, 512)	0.848	83.82	0.36	90.14	88.76	80.92	81.57	89.91
LEMON (Ours), from BERT(6, 384)	0.866	85.54	0.38	90.94	89.33	81.81	81.81	90.40

Motivation

0000000

Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References Expensive in LLM Pre-Training

• The advance of LLM comes at the expensive cost of energey consumption³.

Figure 1: The electricity consumption comparison between countries and AI. Data source: [77].

Du et al.

³1, A Survey of Resource-efficient LLM and Multimodal Foundation Models, 2024.

Obstacle 2

Therefore, in this work ...

Obstacle 3

Ablations

Aim 🞯 in this work

000000

Obstacle 1

We aim to investigate model growth for efficient LLM pre-training.

*In this presentation

- This presentation is basically showing the steps involved in our investigation of this project.
- Particularly, we address Three Obstacles step by step.

Conclusion

Three Identified Obstacles and Three Corresponding Questions

Obstacle 2

- O1: Lack of comprehensive assessment
 ⇒ Q1: Do Model Growth Methods Work in LLM Pre-Training?
- O2: The untested scalability ⇒ Q2: Are These Methods scalable?
- O3: Lack of empirical guidelines ⇒ Q3: How to use in practice?

Obstacle 1

Obstacle 3

Ablations

Motivation

000000

Conclusion

Obstacle ?

Aim 🞯

Motivation

Obstacle 1

•000

Examine whether model growth techniques actually work in LLM pre-training.

Process 🖾

1 Category model growth techniques into **four atomic growth operators**, G_{direct} , G_{learn} , G_{zero} and G_{random} .

Obstacle 3

Ablations

2 Then we examine them into depthwise growth and widthwise growth, G^{\uparrow} and G^{\rightarrow} .

Conclusion

Obstacle 3

Ablations

Conclusion

References

Four Atomic Growth Operators: G

0000

Tips

You may refer to animated GIF atomic growth operators.

Motivation
occocco Obstacle 1
occocc Obstacle 2
occocc Obstacle 3
occocc Ablations
occocc Conclusion
occocc References Experiment Details V <

- Codebase: Tiny-llama codebase https://github.com/jzhang38/TinyLlama
- Dataset: Slimpajama-627B

https://huggingface.co/datasets/cerebras/SlimPajama-627B

Process 🖾 – Grow from 410M LLM to 1.1B LLM

Motivation 0000000	Obst 000	e •		stacle 2 0000		Obstacle 3		Ablations 00000		Conclusion References
Experim	ent F	Resu	lts							
			pth		l		idth		Baseline	
	G_{direct}^{\uparrow}	G_{zero}^{\uparrow}	G_{random}^{\uparrow}	G^{\uparrow}_{learn}	G_{direct}^{\rightarrow}	G_{zero}^{\rightarrow}	G_{random}^{\rightarrow}	G_{learn}^{\rightarrow}	scratch	Takeaways
Lambada (†) -		48.67	44.14		46.16	44.67	44.24	45.66	47.87	• In general, <i>G</i> [↑]
ARC-c (†) -	29.18		28.41	27.38	28.58	26.70	27.64	26.70	27.21	is better than
ARC-e (†) -	54.25	51.76	52.69	51.17	51.55	49.70	53.82	50.37	48.86	$G^{ ightarrow}.$
Logiqa (†) -	28.87		25.96		27.34	25.03	26.11	26.57	25.96	• $G^{\uparrow}_{\text{direct}}$
PIQA (†) -	71.98	71.81	70.78		69.47	69.74	70.13	69.91	69.64	enterges as
Sciq (†) -	81.1	81.9	77.7		81.4	76.0	79.5	79.5	76.8	the clear winner.
Winogrande (†) -	56.03	56.98	53.35		54.22	54.93	52.95	53.51	54.53	We denote
Avg. (†) -	52.80		50.43		51.25	49.54	50.63	50.32	50.12	$G_{\text{direct}}^{\uparrow}$ as
Wikitext (\downarrow) -	16.73	17.35	17.85	16.93	18.03	18.76	18.29	18.44	17.98	G _{stack} .
Loss (↓) -	2.151		2.258	2.156	2.209	2.249	2.227	2.233	2.204	Studie
Speed-up (个) -	49.1%	46.6%	-25.7%	48.6%	-0.7%	-17.9%	-13.8%	-15.4%	0.0%	Back to Three Obstacles

Du et al.

Du et al.

Jul 2024

13/30

Motivation 0000000 Obstacle 2

Obstacle 1

Obstacle 3

Ablations

Conclusion

References

Figure: Training Loss on 3B

Figure: Training Loss on 7B

Obstacle 2

000000

Obstacle 3

Ablations

Figure: Average Accuracy on 3B

Obstacle 1

Motivation

Figure: Average Accuracy on 7B

Conclusion

Obstacle Two - The Untested Scalability

Concern

Efficient strategies may initially learn faster but ultimately perform similarly or worse than vanilla training methods when given more training data.

Process 🖾

Scale to larger training tokens. We "overtrain" a 410M LLM for 750B tokens, which is almost **100 times larger** than Chinchilla scaling law recommended (8B).

Obstacle 1

Obstacle 2

Obstacle 3

Ablations

Conclusion

References

Figure: Training Loss on 410M with 750B tokens

Figure: Average Accuracy on 410M with 750B tokens

Figure: Loss Difference

- We plot our four models (410M, 1.1B, 3B, and 7B) on the same figure.
- Then uncover our "scaling law" using the G_{stack} operator: $L_C = aC^b$

Takeaways

- *G*_{stack} is **scalable** in both model scale and training tokens.
- G_{stack} scaling law exhibits improved efficiency compared to the scaling law estimated from baseline LLMs.

Back to Three Obstacles

How to use G_{stack} in practice?

Process 🖾

Determining Growth Timing (d) and Growth Factor (g).

- Growth timing *d*: the training token *d* for the small model.
- Growth factor *g*: the factor by which the model parameters increased after growth (roughly equivalent to the ratio of increased layers in *G*_{stack}).

$$log_{10}(d) = a \log_{10}(N) + \frac{b}{\log_{10}(C)} + c$$

where C is the computing budget and N is the target parameter size.

Du et al.

(9)

Figure: IsoFLOP on 410M

Figure: IsoFLOP on 1.1B

Figure: IsoFLOP on 3B

Predicting Growth Timing *d*

• We formalize a set of guidelines for effectively utilizing the *G*_{stack} operator. For growth timing *d* (tokens):

$$log_{10}(d) = 0.88 \log_{10}(N) + \frac{163.27}{\log_{10}(C)} - 5.74$$
 (10)

• where C is the computing budget and N is the model parameters.

Growth Factor *g*

Obstacle 1

Motivation

Obstacle 2

Obstacle 3

00000

Figure: IsoFLOP on 1.1B

Takeaways

Ablations

• For predicting growth timing *d*, please refer to Eq 10.

Conclusion

• For predicting growth factor *g*, due to computational constraints, we indicate that the optimal growth factor *g* lies between 2 and 4.

Figure: IsoFLOP on 410M

Back to Three Obstacles

- Q1: Do Model Growth Methods Work in LLM Pre-Training?
 ⇒ We summarize the existing model growth approaches into four operators and make a comprehensive evaluation, the depthwise growth *G*_{stack} beats all other methods.
- Q2: Are These Methods scalable?

 \Rightarrow We scale up G_{stack} by extending the model size and training data scales. We find that G_{stack} operator has excellent scalability.

• Q3: How to use in practice?

 \Rightarrow We systematically analyze the usage of the G_{stack} operator, focusing on growth timing and growth factor. We provide guidelines of equations for effectively utilizing the G_{stack} operator.

Motivation	Obstacle 1	Obstacle 2	Obstacle 3	Ablations	Conclusion	References
0000000	0000	000000	00000	•0000	00	
How to s						

- We compare our "one-hop" G_{stack} and gradual stacking approach (two-step: train-stack-train-stack).
- G_{stack} achieves a 2.4 higher average accuracy and 0.6 better Wikitext PPL than gradual stacking when pre-training large models for 100B tokens.

- G_{stack} involves taking the entire small model as a unit and directly stacking it, which can retain the connections between most layers.
- Interpolation involves replicating and interleaving each layer in the small model, which almost break the connections.

To measure the degree of adjacent inter-layer connections after stacking, we define the connection rate R_c :

$$c = \frac{Con_r}{Con_{all}}$$

where the *Con_r* is number of retained connections, the *Con_{all}* is number of all layers.

R

Example

For example, if we had a small model with three layers, denoted as $\{L_1, L_2, L_3\}$, and desired a model depth of 6, G_{stack} would result in $\{L_1, L_2, L_3, L_1, L_2, L_3\}$, where its $R_c = 80\%$. The interpolation approach would result in $\{L_1, L_1, L_2, L_3, L_3\}$, where its $R_c = 40\%$.

(11)

3. Partial Stacking

- We stack a small model with 6 layers ({L₁, L₂, · · · , L₆}) to a 24 layers target model.
- Partial stacking has been explored in LLMs like LlamaPro^a, Solar^b. But their goal is to stack an off-the-shelf LLM such as Llama2.

^{*a*}2, "Llama pro: Progressive llama with block expansion", 2024.

^b3, "Solar 10.7 b: Scaling large language models with simple yet effective depth up-scaling", 2023.

lul 2024

Eight partial stacking methods can be divided into three groups based on their loss.

Obstacle 3

- The first group, {123456*4, 12-3456*5-56, 12-345*7-6, 123-456*7}, achieves the best.
- The second group consisting of {1234-56*10, 12-34*10-56, 1-234*7-56}, performs just fine.
- The third group, {123*7-456}, performs poorly, even worse than the baseline.

Method	Stacked parts	R_c	
123456*4	all	87.0%	
12-3456*5-56	middle-back	78.3%	
12-345*7-6	middle-back	74.0%	
123-456*7	back	74.0%	
1234-56*10	back	60.7%	
12-34*10-56	middle	60.7%	
1-234*7-56	front-middle	74.0%	
123*7-456	front	74.0%	
	123456*4 12-3456*5-56 12-345*7-6 123-456*7 1234-56*10 12-34*10-56 1-234*7-56	123456*4all12-3456*5-56middle-back12-345*7-6middle-back123-456*7back1234-56*10back12-34*10-56middle1-234*7-56front-middle	

Obstacle 2

Takeaways

Ablations

0000

 we conclude that: all > middle ≈ back ≫ front.

Conclusion

• Meanwhile, when the stacked parts are the same, the larger the R_c , the better the performance.

Motivation

Obstacle 1

- This work empirically explores model growth approaches for efficient LLM pre-training.
- We first comprehensively evaluate model growth techniques into four atomic operators and explore depthwise growth G_{stack} beats all other methods and baselines in various evaluations.
- We next address concerns about the scalability of *G*_{stack} by extending the model and training data scales.
- Furthermore, we systematically analyze the usage of the G_{stack} operator, focusing on growth timing and growth factor.

Please visit homepage for the paper, codes and ckpts: https://llm-stacking.github.io/

Motivation

Obstacle 1

Obstacle 2

Obstacle 3

Ablations

Conclusion

References

Thanks!

Du et al.

- [1] Mengwei Xu et al. A Survey of Resource-efficient LLM and Multimodal Foundation Models. 2024. arXiv: 2401.08092 [cs.LG]. URL: https://arxiv.org/abs/2401.08092.
- [2] Chengyue Wu et al. "Llama pro: Progressive llama with block expansion". In: *arXiv preprint arXiv:2401.02415* (2024).
- [3] Dahyun Kim et al. "Solar 10.7 b: Scaling large language models with simple yet effective depth up-scaling". In: *arXiv preprint arXiv:2312.15166* (2023).