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What is Model Growth?

Aim
• Leverage trained smaller (base) models to accelerate the training of larger

(target) models.
• Expect a faster speed given the same budget, compared with model trained from

scratch.

Process

Train a small model Grow Continual training the large model

Du et al. Jul 2024 3 / 30
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Example: Net2Net, ICLR 2016
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h[1] = ReLU(x [1] · a + x [2] · b) (1)
h[2] = ReLU(x [1] · c + x [2] · d) (2)

y = ReLU(h[1] · e + h[2] · f ) (3)
(4)

h[1] = ReLU(x [1] · a + x [2] · b) (5)
h[2] = ReLU(x [1] · c + x [2] · d) (6)
h[3] = ReLU(x [1] · c + x [2] · d) (7)

y = ReLU(h[1] · e + h[2] · f
2
+ h[3] · f

2
) (8)

Du et al. Jul 2024 4 / 30



Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

What is Model Growth?

Many Follow-ups
• stackBert ICML19, bert2bert ACL20, stagedTrain 22, GradMax ICLR22, LiGO

ICLR23, Lemon ICLR24, MSG ICLR24, . . .
Impressive performance
• And they assert they can speedup the training phase for about 30% to 60%.

But ...
• These techniques are underexplored in pre-training LLM. Underexplored

• Considering how expensive LLM pre-training is, if we could successfully adopt model
growth techniques to LLM pre-training, which would be a great contribution to
efficiency and resource-saving. Expensive
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Underexplored in Efficient LLM Pre-Training

• Model growth techniques are underexplored in pre-training LLM.

Figure: MSG ICLR24 Figure: LEMON ICLR24
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Expensive in LLM Pre-Training
• The advance of LLM comes at the expensive cost of energey consumption3.

31, A Survey of Resource-efficient LLM and Multimodal Foundation Models, 2024.
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Investigate Model Growth for LLM Pre-Training

Therefore, in this work ...

Aim in this work
We aim to investigate model growth for efficient LLM pre-training.

*In this presentation
• This presentation is basically showing the steps involved in our investigation of

this project.
• Particularly, we address Three Obstacles step by step.
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Three Identified Obstacles and Three Corresponding Questions
• O1: Lack of comprehensive assessment
⇒ Q1: Do Model Growth Methods Work in LLM Pre-Training?

• O2: The untested scalability
⇒ Q2: Are These Methods scalable?

• O3: Lack of empirical guidelines
⇒ Q3: How to use in practice?

1 Investigate O1(Lack of comprehensive assessment) Obstacle One

2 if Q1 is true:
3 Investigate O2(The untested scalability) Obstacle Two

4 if Q2 is true:
5 Investigate O3(Lack of empirical guidelines) Obstacle Three
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Obstacle One - Lack of Comprehensive Assessment

Aim
Examine whether model growth techniques actually work in LLM pre-training.

Process
1 Category model growth techniques into four atomic growth operators, Gdirect,

Glearn, Gzero and Grandom.
2 Then we examine them into depthwise growth and widthwise growth, G↑ and

G→.
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Four Atomic Growth Operators: G
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Tips
You may refer to
animated GIF atomic
growth operators.
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Experiment Details

• Codebase: Tiny-llama codebase https://github.com/jzhang38/TinyLlama

• Dataset: Slimpajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

Process – Grow from 410M LLM to 1.1B LLM

Train a LLM(6L;2048H) for 10B tokens

LLM(24L;2048H) = G↑(LLM(6L;2048H))

Then train LLM(24L;2048H) for 100B tokens

Train a LLM(24L;1024H) for 10B tokens

LLM(24L;2048H) = G→(LLM(24L;1024H))

Then train LLM(24L;2048H) for 100B tokens
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Experiment Results

| | | | | | | | |
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29.18 28.32 28.41 27.38 28.58 26.70 27.64 26.70 27.21
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28.87 27.95 25.96 28.11 27.34 25.03 26.11 26.57 25.96

71.98 71.81 70.78 71.16 69.47 69.74 70.13 69.91 69.64

81.1 81.9 77.7 80.0 81.4 76.0 79.5 79.5 76.8
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16.73 17.35 17.85 16.93 18.03 18.76 18.29 18.44 17.98

2.151 2.161 2.258 2.156 2.209 2.249 2.227 2.233 2.204

49.1% 46.6% -25.7% 48.6% -0.7% -17.9% -13.8% -15.4% 0.0%

Lambada (↑) -

ARC-c (↑) -

ARC-e (↑) -

Logiqa (↑) -

PIQA (↑) -

Sciq (↑) -

Winogrande (↑) -

Avg. (↑) -

Wikitext (↓) -

Loss (↓) -

Depth Width

𝑠𝑐𝑟𝑎𝑡𝑐ℎ

Baseline

𝐺𝑑𝑖𝑟𝑒𝑐𝑡
↑ 𝐺𝑧𝑒𝑟𝑜

↑ 𝐺𝑟𝑎𝑛𝑑𝑜𝑚
↑ 𝐺𝑙𝑒𝑎𝑟𝑛

↑ 𝐺𝑑𝑖𝑟𝑒𝑐𝑡
→ 𝐺𝑧𝑒𝑟𝑜

→ 𝐺𝑟𝑎𝑛𝑑𝑜𝑚
→ 𝐺𝑙𝑒𝑎𝑟𝑛

→

Speed-up (↑) -

Takeaways
• In general, G↑

is better than
G→.

• G↑
direct

emerges as
the clear
winner.

• We denote
G↑

direct as
Gstack.

Back to Three Obstacles
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Obstacle Two - The Untested Scalability

Aim
Is Gstack scalable (robust) in efficient LLM pre-training?

Process
1 Scale to training 3B and 7B LLMs.

Train a LLM(8L;2560H) for 10B tokens

LLM(32L;2560H) = Gstack(LLM(8L;2560H))

Then train LLM(32L;2560H) for 300B tokens

Train a LLM(8L;4096H) for 10B tokens

LLM(32L;4096H) = Gstack(LLM(8L;4096H))

Then train LLM(32L;4096H) for 300B tokens

Du et al. Jul 2024 13 / 30
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Obstacle Two - The Untested Scalability

Concern
Efficient strategies may initially learn faster but ultimately perform similarly or worse
than vanilla training methods when given more training data.

Process

2 Scale to larger training
tokens. We “overtrain” a
410M LLM for 750B tokens,
which is almost 100 times
larger than Chinchilla scaling
law recommended (8B).

Train a LLM(6L;1024H) for 10B tokens

LLM(24L;1024H) = Gstack(LLM(6L;1024H))

Then train LLM(24L;1024H) for 750B tokens
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Estimated Scaling Laws
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• We plot our four models (410M, 1.1B,
3B, and 7B) on the same figure.

• Then uncover our “scaling law” using
the Gstack operator: LC = aCb

Takeaways
• Gstack is scalable in both model scale and

training tokens.
• Gstack scaling law exhibits improved

efficiency compared to the scaling law
estimated from baseline LLMs.

Back to Three Obstacles
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Obstacle Three - Lack of Empirical Guidelines

Aim
How to use Gstack in practice?

Process
Determining Growth Timing (d ) and Growth Factor (g).
• Growth timing d : the training token d for the small model.
• Growth factor g: the factor by which the model parameters increased after

growth (roughly equivalent to the ratio of increased layers in Gstack).

log10(d) = a log10(N) +
b

log10(C)
+ c, (9)

where C is the computing budget and N is the target parameter size.
Du et al. Jul 2024 19 / 30
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Predicting Growth Timing d
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• We formalize a set of guidelines for effectively
utilizing the Gstack operator. For growth timing
d (tokens):

•

log10(d) = 0.88 log10(N) +
163.27
log10(C)

− 5.74 (10)

• where C is the computing budget and N is the
model parameters.
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Takeaways
• For predicting growth

timing d , please refer to
Eq 10.

• For predicting growth
factor g, due to
computational
constraints, we indicate
that the optimal growth
factor g lies between 2
and 4.
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Takeaways of Three Obstacles

Back to Three Obstacles

• Q1: Do Model Growth Methods Work in LLM Pre-Training?
⇒ We summarize the existing model growth approaches into four operators and
make a comprehensive evaluation, the depthwise growth Gstack beats all other
methods.

• Q2: Are These Methods scalable?
⇒ We scale up Gstack by extending the model size and training data scales. We
find that Gstack operator has excellent scalability.

• Q3: How to use in practice?
⇒ We systematically analyze the usage of the Gstack operator, focusing on growth
timing and growth factor. We provide guidelines of equations for effectively
utilizing the Gstack operator.
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How to stack?
1. Gradual Stacking

• We compare our
“one-hop” Gstack and
gradual stacking
approach (two-step:
train-stack-train-stack).

• Gstack achieves a 2.4
higher average accuracy
and 0.6 better Wikitext
PPL than gradual stacking
when pre-training large
models for 100B tokens. 0 2 4 6 8
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How to stack?
2. Interpolation

• Gstack involves taking the
entire small model as a
unit and directly stacking
it, which can retain the
connections between
most layers.

• Interpolation involves
replicating and
interleaving each layer in
the small model, which
almost break the
connections.
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To measure the degree of adjacent inter-layer connections after stacking, we define
the connection rate Rc :

Rc =
Conr

Conall
(11)

where the Conr is number of retained connections, the Conall is number of all layers.

Example
For example, if we had a small model with three layers, denoted as {L1,L2,L3}, and
desired a model depth of 6, Gstack would result in {L1,L2,L3,L1,L2,L3}, where its
Rc = 80%. The interpolation approach would result in {L1,L1,L2,L2,L3,L3}, where its
Rc = 40%.
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How to stack?
3. Partial Stacking

• We stack a small model
with 6
layers ({L1,L2, · · · ,L6}) to a
24 layers target model.

• Partial stacking has been
explored in LLMs like
LlamaProa, Solarb. But
their goal is to stack an
off-the-shelf LLM such as
Llama2.

a2, “Llama pro: Progressive llama with block
expansion”, 2024.

b3, “Solar 10.7 b: Scaling large language models
with simple yet effective depth up-scaling”, 2023.
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Eight partial stacking methods can be divided into three groups based on their loss.
• The first group, {123456*4, 12-3456*5-56, 12-345*7-6, 123-456*7}, achieves the best.
• The second group consisting of {1234-56*10, 12-34*10-56, 1-234*7-56}, performs just

fine.
• The third group, {123*7-456}, performs poorly, even worse than the baseline.

Group Method Stacked parts Rc

First

123456*4 all 87.0%
12-3456*5-56 middle-back 78.3%

12-345*7-6 middle-back 74.0%
123-456*7 back 74.0%

Second
1234-56*10 back 60.7%
12-34*10-56 middle 60.7%
1-234*7-56 front-middle 74.0%

Third 123*7-456 front 74.0%

Takeaways
• we conclude that: all >

middle ≈ back ≫ front.
• Meanwhile, when the

stacked parts are the
same, the larger the
Rc , the better the
performance.
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Conclusion

• This work empirically explores model growth approaches for efficient LLM
pre-training.

• We first comprehensively evaluate model growth techniques into four atomic
operators and explore depthwise growth Gstack beats all other methods and
baselines in various evaluations.

• We next address concerns about the scalability of Gstack by extending the model
and training data scales.

• Furthermore, we systematically analyze the usage of the Gstack operator,
focusing on growth timing and growth factor.

Please visit homepage for the paper, codes and ckpts: https://llm-stacking.github.io/

Du et al. Jul 2024 29 / 30



Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References

Thanks!
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