

Replay-and-Forget-Free Graph Class-Incremental Learning: A Task Profiling and Prompting Approach

Chaoxi Niu¹, Guansong Pang², Ling Chen¹, Bing Liu³

¹ AAII, University of Technology Sydney, Australia

² Singapore Management University, Singapore

³ University of Illinois at Chicago, USA

Framework

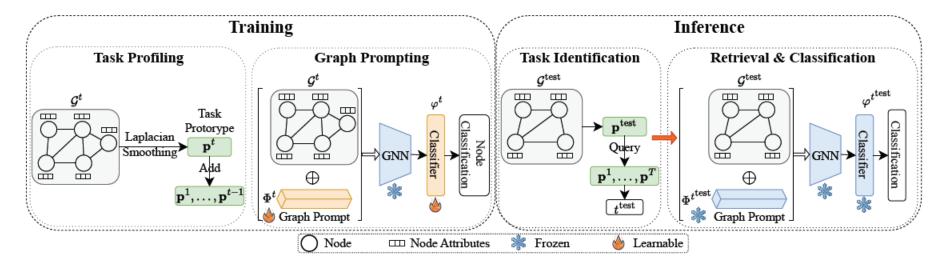
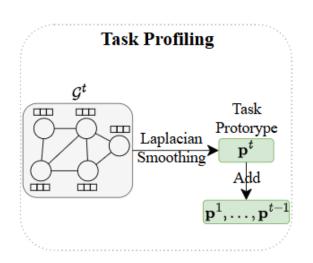


Figure 2: Overview of the proposed TPP approach. During training, for each graph task t, the task prototype \mathbf{p}^t is generated by applying Laplacian smoothing on the graph \mathcal{G}^t and added to $\mathcal{P} = \{\mathbf{p}^1, \dots, \mathbf{p}^{t-1}\}$. At the same time, the graph prompt Φ^t and the classification head φ^t for this task are optimized on \mathcal{G}^t through a frozen pre-trained GNN. During inference, the task ID of the test graph is first inferred (*i.e.*, task identification). Then, the graph prompt and the classifier of the predicted task are retrieved to perform the node classification in GCIL. The GNN is trained on \mathcal{G}^1 and remains frozen for subsequent tasks.

Method

Task Profiling for Task ID Prediction



Graph Laplacian Smoothing

$$Z^{t} = (I - (\hat{D}^{t})^{-\frac{1}{2}} \hat{L}^{t} (\hat{D}^{t})^{-\frac{1}{2}})^{s} X^{t}$$

Task Prototype

$$\mathbf{p}^t = \frac{1}{|\mathcal{V}_{\text{train}}^t|} \sum_{i \in \mathcal{V}_{\text{train}}^t} \mathbf{z}_i^t (\hat{D}_{ii}^t)^{-\frac{1}{2}}$$

Test Task Prototype

$$\mathbf{p}^{\text{test}} = \frac{1}{|\mathcal{V}^{\text{test}}|} \sum_{i \in \mathcal{V}^{\text{test}}} \mathbf{z}_i^{\text{test}} (\hat{D}_{ii}^{\text{test}})^{-\frac{1}{2}}$$

Task Inference

$$t^{\text{test}} = \arg\min(d(\mathbf{p}^{\text{test}}, \mathbf{p}^1), \dots, d(\mathbf{p}^{\text{test}}, \mathbf{p}^T)))$$

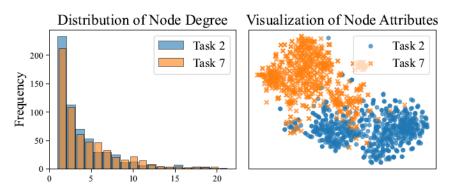
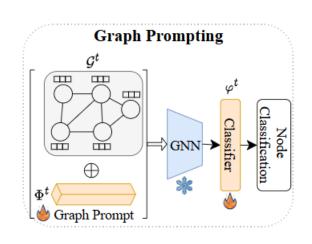


Figure 3: The differences between two graphs in structure and node attributes.

Method

Graph Prompt Learning



Prompt Design

$$\bar{\mathbf{x}}_i^t = \mathbf{x}_i^t + \sum_{j=0}^k \alpha_j \phi_j^t, \quad \alpha_j = \frac{e^{(\mathbf{w}_j)^T \mathbf{x}_i^t}}{\sum_{l=0}^k e^{(\mathbf{w}_l)^T \mathbf{x}_i^t}}$$

Node Classification with Prompt

$$\hat{Y}^t = \varphi^t(f(A^t, X^t + \Phi^t))$$

Training Objective

$$\min_{\Phi^t, \varphi^t} \frac{1}{|\mathcal{V}_{\text{train}}^t|} \sum_{i \in \mathcal{V}_{\text{train}}^t} \ell_{\text{CE}}(\hat{y}_i^t, y_i^t)$$

Results

Table 1: Results (mean \pm std) under the GCIL setting on four large datasets. The best performance on each dataset is boldfaced. " \uparrow " denotes the higher value represents better performance. Oracle Model can get access to the data of all tasks and task IDs, *i.e.*, it obtains the upper bound performance. " \checkmark " in Data Replay indicates the use of data replay in the model, and \times denotes no data replay involved.

Methods	Data	CoraFull		Arixv		Reddit		Products	
	Replay	AA/%↑	AF/%↑	AA/%↑	AF/%↑	AA/%↑	AF/%↑	AA/%↑	AF/%↑
Fine-tune	×	3.5 ± 0.5	-95.2 ± 0.5	4.9 ± 0.0	-89.7 ± 0.4	5.9±1.2	-97.9 ± 3.3	7.6 ± 0.7	-88.7±0.8
Joint	×	81.2±0.4	-	51.3±0.5	-	97.1 ± 0.1	-	71.5 ± 0.1	-
EWC	×	52.6±8.2	-38.5 ± 12.1	8.5±1.0	-69.5 ± 8.0	10.3±11.6	-33.2 ± 26.1	23.8 ± 3.8	-21.7±7.5
MAS	×	6.5 ± 1.5	-92.3 ± 1.5	4.8 ± 0.4	-72.2 ± 4.1	9.2±14.5	-23.1 ± 28.2	16.7 ± 4.8	-57.0 ± 31.9
GEM	×	8.4 ± 1.1	-88.4 ± 1.4	4.9 ± 0.0	-89.8 ± 0.3	11.5±5.5	-92.4 ± 5.9	4.5 ± 1.3	-94.7 ± 0.4
LwF	×	33.4 ± 1.6	-59.6 ± 2.2	9.9 ± 12.1	-43.6 ± 11.9	86.6±1.1	-9.2 ± 1.1	48.2 ± 1.6	-18.6 ± 1.6
TWP	×	62.6 ± 2.2	-30.6 ± 4.3	6.7 ± 1.5	-50.6 ± 13.2	8.0 ± 5.2	-18.8 ± 9.0	14.1 ± 4.0	-11.4 ± 2.0
ERGNN	\checkmark	34.5 ± 4.4	-61.6 ± 4.3	21.5±5.4	-70.0 ± 5.5	82.7 ± 0.4	-17.3 ± 0.4	48.3 ± 1.2	-45.7 ± 1.3
SSM-uniform	\checkmark	73.0 ± 0.3	-14.8 ± 0.5	47.1 ± 0.5	-11.7 ± 1.5	94.3 ± 0.1	-1.4 ± 0.1	62.0 ± 1.6	-9.9 ± 1.3
SSM-degree	✓	75.4 ± 0.1	-9.7 ± 0.0	48.3 ± 0.5	-10.7 ± 0.3	94.4 ± 0.0	-1.3 ± 0.0	63.3 ± 0.1	-9.6 ± 0.3
SEM-curvature	\checkmark	77.7 ± 0.8	-10.0 ± 1.2	49.9 ± 0.6	-8.4 ± 1.3	96.3 ± 0.1	-0.6 ± 0.1	65.1 ± 1.0	-9.5 ± 0.8
CaT	✓	80.4 ± 0.5	-5.3 ± 0.4	48.2 ± 0.4	-12.6 ± 0.7	97.3±0.1	-0.4 ± 0.0	70.3 ± 0.9	-4.5 ± 0.8
DeLoMe	✓	81.0 ± 0.2	-3.3 ± 0.3	50.6 ± 0.3	5.1 ± 0.4	97.4 ± 0.1	-0.1 ± 0.1	67.5 ± 0.7	-17.3 ± 0.3
OODCIL	✓	71.3 ± 0.5	-1.1 ± 0.1	19.3 ± 1.4	-1.0 ± 0.4	79.3±0.8	-0.1 ± 0.0	41.6 ± 0.9	-1.6 ± 0.4
TPP (Ours)	×	93.4 ± 0.4	0.0 ± 0.0	85.4 ± 0.1	0.0 ± 0.0	99.5 ± 0.0	0.0 ± 0.0	94.0 ± 0.5	0.0 ± 0.0
Oracle Model	×	95.5±0.2	-	90.3±0.4	-	99.5±0.0	-	95.3±0.8	-

