

THE CHALLENGES OF THE NONLINEAR REGIME FOR PHYSICS-INFORMED NEURAL NETWORKS

A. Bonfanti, G. Bruno, C. Cipriani

PHYSICS-INFORMED NEURAL NETWORKS

Partial Differential Equation (**PDE**) on a domain Ω:

 $\mathcal{R}u(x) = f(x), \quad x \in \Omega,$ $u(x) = g(x), \quad x \in \partial\Omega.$

Approximate the PDE solution with a neural network (**PINN**)

The solution minimizes:

$$
\mathcal{L}(\theta) = \frac{1}{2} \int_{\Omega} |\mathcal{R}u_{\theta}(x) - f(x)|^2 dx + \frac{1}{2} \int_{\partial \Omega} |u_{\theta}(x) - g(x)|^2 d\sigma(x)
$$

PHYSICS-INFORMED NEURAL NETWORKS

Partial Differential Equation (**PDE**) on a domain Ω:

 $\mathcal{R}u(x) = f(x), \quad x \in \Omega,$ $u(x) = q(x), \quad x \in \partial\Omega.$

Approximate the PDE solution with a neural network (**PINN**)

The solution minimizes:

 $L(\theta) = \frac{1}{2N_r} \sum_{i=1}^{N_r} |r_{\theta}(x_i^r)|^2 + \frac{1}{2N_b} \sum_{i=1}^{N_b} |u_{\theta}(x_i^b) - g(x_i^b)|^2$

THE NEURAL TANGENT KERNEL OF PINNS

PINN with *m* parameters and NTK rescaling:

$$
u_{\theta}(x) := \frac{1}{\sqrt{m}} W^1 \cdot \sigma(W^0 x + b^0) + b^1
$$

Training the parameters of PINNs can be interpreted as a gradient flow:

 $\partial_t \theta(t) = -\nabla L(\theta(t))$

Infinite-width limit

Consider
$$
J(t) = \begin{bmatrix} \partial_{\theta} u_{\theta(t)}(\mathbf{x}^{b}) \\ \partial_{\theta} r_{\theta(t)}(\mathbf{x}^{r}) \end{bmatrix}
$$

\n $K(t) = J(t)J(t)^{T}$
\nIs the Neural Tangent
\nKernel (NTK)

The following equation holds:

$$
\begin{bmatrix} \partial_t u_{\theta(t)}(\mathbf{x}^b) \\ \partial_t r_{\theta(t)}(\mathbf{x}^r) \end{bmatrix} = -K(t) \begin{bmatrix} u_{\theta(t)}(\mathbf{x}^b) - g(\mathbf{x}^b) \\ r_{\theta(t)}(\mathbf{x}^r) \end{bmatrix}
$$

The loss decays as: $L(\theta(t)) \leq (1 - \eta \mu)^t L(\theta(0))$

WHAT ABOUT THE NONLINEAR REGIME?

Almost sure convergence of the NTK at initialization fails with nonlinear PDEs.

We prove **convergence in law** to a stochastic variable, and its law can be explicitly determined.

 $K(0) \stackrel{\mathcal{D}}{\rightarrow} \bar{K}$ as $m \rightarrow \infty$

The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks *- A. Bonfanti, G. Bruno, C. Cipriani*

WHAT ABOUT THE NONLINEAR REGIME?

Even under generous assumptions, we show that the **constancy of the NTK during training does not hold** for general nonlinear PDEs.

 $\lim_{m \to \infty} \sup_{t \in [0,T]} ||K(t) - K(0)|| > 0$ a.s.

WHAT ABOUT THE NONLINEAR REGIME?

Traditional proofs of the constancy of the NTK fail.

We prove that the **Hessian of the residuals does not vanish**.

 $H_r(0)$ linear

The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks *- A. Bonfanti, G. Bruno, C. Cipriani*

First order:

Gradient flow: $\partial_t \theta(t) = -\nabla L(\theta(t))$

$$
\text{Training dynamics: } \begin{bmatrix} \partial_t u_{\theta(t)}(\mathbf{x}^b) \\ \partial_t r_{\theta(t)}(\mathbf{x}^r) \end{bmatrix} = -K(t) \begin{bmatrix} u_{\theta(t)}(\mathbf{x}^b) \\ r_{\theta(t)}(\mathbf{x}^r) \end{bmatrix} \begin{bmatrix} \text{Training} \\ \text{dynamic} \end{bmatrix}
$$

With K being the NTK

Second order:

"Gauss-Newton" flow: $\partial_t \theta(t) = -(J^T(t)J(t))^{\dagger} \nabla L(\theta(t))$ dynamics:

With U unitary, and D diagonal with entries 0 or 1.

While ensuring **fast convergence**, second-order methods mitigate the issue of **spectral bias** when training PINNs on PDEs containing high-frequency components.

The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks *- A. Bonfanti, G. Bruno, C. Cipriani*

WAVE EQUATION

(linear, spectrally biased)

BURGER EQUATION

(nonlinear)

 $5^{0.35}$

 50.25

 \overleftarrow{a} 0.20

 $relatived
0.10
0.05$

 0.00

δ 0.30

Munich Center for Machine Learnin

ADVECTION EQUATION

(linear, Curriculum Training)

POISSON EQUATION

(linear, Random Fourier Features)

Euskal Herrik

NAVIER STOKES' EQUATIONS

(nonlinear, Causality-based training)