

THE CHALLENGES OF THE NONLINEAR REGIME FOR PHYSICS-INFORMED NEURAL NETWORKS

A. Bonfanti, G. Bruno, C. Cipriani

eman ta zabal zazu

PHYSICS-INFORMED NEURAL NETWORKS

Partial Differential Equation (PDE) on a domain Ω :

 $\mathcal{R}u(x) = f(x), \quad x \in \Omega,$ $u(x) = g(x), \quad x \in \partial\Omega.$

Approximate the PDE solution with a neural network (**PINN**) u_{θ}

The solution minimizes:

$$\mathcal{L}(\theta) = \frac{1}{2} \int_{\Omega} |\mathcal{R}u_{\theta}(x) - f(x)|^2 dx + \frac{1}{2} \int_{\partial \Omega} |u_{\theta}(x) - g(x)|^2 d\sigma(x)$$

PHYSICS-INFORMED NEURAL NETWORKS

Partial Differential Equation (PDE) on a domain Ω :

 $\mathcal{R}u(x) = f(x), \quad x \in \Omega,$ $u(x) = g(x), \quad x \in \partial\Omega.$

Approximate the PDE solution with a neural network (**PINN**) u_{θ}

The solution minimizes:

 $L(\theta) = \frac{1}{2N_r} \sum_{i=1}^{N_r} |r_{\theta}(x_i^r)|^2 + \frac{1}{2N_b} \sum_{i=1}^{N_b} |u_{\theta}(x_i^b) - g(x_i^b)|^2$

THE NEURAL TANGENT KERNEL OF PINNS

PINN with *m* parameters and NTK rescaling:

$$u_{\theta}(x) := \frac{1}{\sqrt{m}} W^1 \cdot \sigma(W^0 x + b^0) + b^1$$

Training the parameters of PINNs can be interpreted as a gradient flow:

 $\partial_t \theta(t) = -\nabla L(\theta(t))$

Infinite-width limit

Kernel (NTK)

Consider
$$J(t) = \begin{bmatrix} \partial_{\theta} u_{\theta(t)}(\mathbf{x}^b) \\ \partial_{\theta} r_{\theta(t)}(\mathbf{x}^r) \end{bmatrix}$$

 $K(t) = J(t)J(t)^T$
Is the Neural Tangent

The following equation holds:

$$\begin{bmatrix} \partial_t u_{\theta(t)}(\mathbf{x}^b) \\ \partial_t r_{\theta(t)}(\mathbf{x}^r) \end{bmatrix} = -K(t) \begin{bmatrix} u_{\theta(t)}(\mathbf{x}^b) - g(\mathbf{x}^b) \\ r_{\theta(t)}(\mathbf{x}^r) \end{bmatrix}$$

The loss decays as: $L(\theta(t)) \leq (1 - \eta \mu)^t L(\theta(0))$

WHAT ABOUT THE NONLINEAR REGIME?

	Linear PDEs	Nonlinear PDEs
NTK at initialization	Deterministic	Random

Almost sure convergence of the NTK at initialization fails with nonlinear PDEs.

We prove **convergence in law** to a stochastic variable, and its law can be explicitly determined.

 $K(0) \xrightarrow{\mathcal{D}} \bar{K} \quad as \ m \to \infty$

The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks - A. Bonfanti, G. Bruno, C. Cipriani

WHAT ABOUT THE NONLINEAR REGIME?

Even under generous assumptions, we show that the **constancy of the NTK during training does not hold** for general nonlinear PDEs.

 $\lim_{m\to\infty}\sup_{t\in[0,T]}\|K(t)-K(0)\|>0\quad a.s.$

WHAT ABOUT THE NONLINEAR REGIME?

	Linear PDEs	Nonlinear PDEs
NTK at initialization	Deterministic	Random
NTK during training	Constant	Dynamic
Hessian H _r	Sparse	Not sparse

Traditional proofs of the constancy of the NTK fail.

We prove that the Hessian of the residuals does not vanish.

1.9

The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks - A. Bonfanti, G. Bruno, C. Cipriani

 $H_r(0)$ linear

	Linear PDEs	Nonlinear PDEs
NTK at initialization	Deterministic	Random
NTK during training	Constant	Dynamic
Hessian <i>H</i> _r	Sparse	Not sparse

First order:

Gradient flow: $\partial_t \theta(t) = -\nabla L(\theta(t))$

Training dynamics: $\int \partial_t dt$

$$\frac{\partial_t u_{\theta(t)}(\mathbf{x}^b)}{\partial_t r_{\theta(t)}(\mathbf{x}^r)} = -K(t) \begin{bmatrix} u_{\theta(t)}(\mathbf{x}^b) \\ r_{\theta(t)}(\mathbf{x}^r) \end{bmatrix}$$

With K being the NTK

Second order:

"Gauss-Newton" flow: $\partial_t \theta(t) = -(J^T(t)J(t))^{\dagger} \nabla L(\theta(t))$ Training dynamics: $\begin{bmatrix} \partial_t u_{\theta(t)}(\mathbf{x}^b) \\ \partial_t r_{\theta(t)}(\mathbf{x}^r) \end{bmatrix} = -U(t)D(t)U(t)^T \begin{bmatrix} u_{\theta(t)}(\mathbf{x}^b) \\ r_{\theta(t)}(\mathbf{x}^r) \end{bmatrix}$

With U unitary, and D diagonal with entries 0 or 1.

While ensuring **fast convergence**, second-order methods mitigate the issue of **spectral bias** when training PINNs on PDEs containing high-frequency components.

The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks - A. Bonfanti, G. Bruno, C. Cipriani

memu

WAVE EQUATION

(linear, spectrally biased)

BURGER EQUATION

(nonlinear)

ADVECTION EQUATION

(linear, Curriculum Training)

POISSON EQUATION

(linear, Random Fourier Features)

NAVIER STOKES' EQUATIONS (nonlinear, Causality-based training)